
Intelligent Web Caching for E-learning Log Data

Sarina Sulaiman1, Siti Mariyam Shamsuddin1, Fadni Forkan1, Ajith Abraham2 and Azmi Kamis3

1Soft Computing Research Group, Faculty of Computer Science and Information System,

Universiti Teknologi Malaysia, Johor, Malaysia
2
Centre for Quantifiable Quality of Service in Communication Systems,

Norwegian University of Science and Technology, Trondheim, Norway
3Centre of Information Technology and Communication,

Universiti Teknologi Malaysia, Johor, Malaysia

sarina@utm.my, mariyam@utm.my, fuelcon@gmail.com, ajith.abraham@ieee.org, azmikamis@utm.my

Abstract

E-learning is a one of e-services that has been used

in Universiti Teknologi Malaysia (UTM) since 2005

so-called as e-Learning@UTM. The demand for e-

learning content rose dramatically in every semester.

The e-learning servers became graver during the

increasing number of users for each semester.

Nevertheless users often experience poor performance

when they access the e-learning contents or download

files. Reasons for such problems are often performance

problems which occur directly on the servers,

problems concerning the network infrastructure and a

surprising fact is that many people tend to access the

same piece of information repetitively. Web caching

has been recognized as the effective schemes to lessen

the service bottleneck, diminish the user access latency

and reduce the network traffic. Accordingly, in this

paper we discuss an alternative way to tackle these

problems with an implementation of log data detection

tool. This tool is capable to self directed either to

cache or not to cache the objects in a document based

on the log data (number of object hits, script size of

objects, and time to receive object) in e-

Learning@UTM for enhancing Web access.

1. Introduction

E-Learning@UTM offers great services for all

lecturers and students in UTM for teaching and

learning process. This service presents different

modules such as assignment, blog, choice, course,

forum, quiz, resource, upload and so on. Each users use

dissimilar modules at the same time. The number of

retrieval the modules can be recognized from the log

data stores in servers.

Consequently, Soft Computing (SC) approach is

introduced into log data detection tool to determine the

type of users’ Web request, and to optimize the

performance on Web cache. Two methods are

employed in this tool; Artificial Neural Network

(ANN), and Artificial Life particularly on Particle

Swarm Optimization (PSO).

Moreover, the novel features of this tool are multi-

platform (can be run on more than one computer or

server platform), adaptive parameters (parameters

change depend on the knowledge discovery data) and

load reduction on origin server.

The log data detection tool is vital to improve the

latest Web caching technology by providing virtual

client and administrator feedback; hence making Web

caching technology practical, efficient and powerful.

This tool provides guidance to the administrators or

any Internet clients to select the popular parameters to

be cached and they can recognize the parameters of

data set in proxy caching accordingly.

The rest of the paper is organized as follows:

Section 2 describes e-Learning@UTM, followed by

intelligent Web caching in Section 3. Section 4

discusses on Intelligent Web caching architecture,

while Section 5 explains the log data detection tool.

Finally, Section 6 concludes the article and future work

of the study.

2. E-Learning@UTM

E-learning@UTM involves 17 institutions with

more than 2000 subjects, consists of undergraduate and

postgraduate subjects. Table 1 shows the number of

hits for only an undergraduate subject, Web

Programming during semester 1 session 2006/2007

(from July to November 2006).

Table 1. Number of hits and percentages for
each module in Web Programming subject

Module Hits Percentage

assignment 2,640 9.60%

blog 37 0.13%

choice 12 0.04%

course 8,582 31.20%

forum 4,641 16.87%

label 17 0.06%

quiz 1,343 4.88%

resource 4,557 16.57%

upload 813 2.96%

user 1,032 3.75%

workshop 3,830 13.93%

Total 27,504

3. Intelligent Web caching

Artificial Neural Network (ANN) comprises of

architecture and a learning algorithm, with the

arrangement of the neurons within the network, i.e.

how they are linked together. ANN learning algorithm

is the execution of each neuron of the network to

minimize the error function. Commonly, the

calculations of artificial neurons are simply a

summation of their input activations with defined

activation function to generate the output value. The

internal state changes in response to input activations

over time, as well as output activations. The supervised

learning paradigm dictates that a network must be

informed whether or not it has produced an acceptable

response. ANN is judged on its ability to successfully

produce a correct output given a certain set of inputs.

Unsuccessful attempt induces a change in the neurons

internal states.

Back propagation (BP) is a mathematical technique

for calculating errors in a complex mathematical

system [5], such as ANN. It is one of a number of

gradient descent algorithms, which are inversely similar

to more traditional artificial intelligence approaches

such as gradient assent algorithms. Such algorithms

map the function onto a three-dimensional surface, with

low land valleys and up land hills. Depending on the

problem, the lower the point on the landscape the better

the output of the function (this situation is reversed for

gradient assent algorithms). The major limitations of

BP algorithm are the existence of temporary, local

minima resulting from the saturation behavior of the

activation function, and the slow rates of convergence.

There are many studies have been done on the

optimizations of standard BP algorithm to overcome

these problems [14]. One such solution is the

integration of Particle Swarm Optimization (PSO) in

ANN learning.

 PSO is an attractive approach due to its easiness in

dealing with very few parameters for weight

adjustment. The first application represents an

approach that can be used for many applications, i.e.,

evolving ANN [6]. PSO is being used to develop not

only the network weights, but also the network

structure. The method is straightforward and efficient,

and generally, it is widely implemented with traditional

ANN training algorithms.

PSO similar to other evolutionary computation

algorithms can be applied to solve most optimization

problems and problems that can be converted to

optimization problems. It is a population-based search

algorithm derived from the simulation of the social

behavior of birds within a flock. The initial intent of

the particle swarm concept was to graphically simulate

the graceful and unpredictable choreography of a bird

flock [7]. The aim is to discover the patterns that

govern the ability of birds to fly synchronously, and to

suddenly change direction with a regrouping in an

optimal formation. From the initial objective, the

concept evolved into a simple and efficient

optimization algorithm.

Let ()txi

r
denotes the position of particle

iP in

hyperspace, at time step t. Subsequently, the position of

iP is changed by adding a velocity ()tvi

r
 to the current

position.

() () ()= − +
rr r

1
i i i

x t x t v t

The velocity vector drives the optimization process

and reflects the social exchange information. There are

two main algorithms usually used in PSO, the local best

algorithm (lbest) and the global best algorithm (gbest).

In the lbest algorithm, each particle moves towards its

previous best position, and also towards the best

particle in its restricted neighborhood and thus

maintains multiple attractors. The gbest algorithm

maintains only a single best solution, and each particle

moves towards its previous best position and towards

the best particle in the whole swarm. Eventually all

particles will converge to this position.

Figure 2 illustrates the steps of Artificial Life Neural

Network (PSO and ANN) for intelligent Web caching.

1. Read and get log data

2. Add log data to array

3. Assign number of hits to log array

4. Add log array to training array

5. Preprocess log data

 5.1 Calculate size

 5.2 Calculate time retrieval

 5.3 Calculate Number of hits

 5.4 Total = size + time+ hit

 5.5 if total > 0.5

 5.5.1 cache = 1

 5.6 else

 5.6.1 cache = 0

 5.7 Find minimum and maximum size

 5.8 Find minimum and maximum time

 5.9 Find minimum and maximum hit

6. Normalize data using min max value

7. Add normalize data to normal array

8. Display actual data

9. Display preprocess data

10. Display normalize data

11. Initialize input, hidden and output neuron

12. Initialize weights

13. Initialize input, hidden and output array

14. Initialize particles value

 14.1 Generate particle weights and velocity

 array

 14.2 Generate pbest weights and velocity array

 14.3 Generate gbest weights

 14.4 Generate initial fitness value using

 feedforward method

15. Train data

 15.1 if fitness < 0.005 or iteration >20000

 15.1.1 Save gbest weights

 15.2 Update position and velocity

16. Display minimum error/fitness

17. Test data

 17.1 Apply weights to network array

 17.2 Add data to input array

 17.3 Feedforward process

 17.4 Find accuracy

18. Display result

19. Simulation data

 19.2 Add data to input array

 19.3 Feedforward process

20. Display result

Figure 2. Artificial Life Neural Network (PSO
and ANN) algorithm

4. Intelligent Web caching architecture

Hammami [8] was the pioneer in investigating the

possibility of using ANN in placing a new cache block

placement. In his work, he adapted the ANN in block

placement strategy in computer cache memory widely

known as Random Access Memory (RAM). Though in

1990’s the setback to this approach is the

computational burden on the CPU processing for the

ANN learning, his study has marked a new era of

caching systems. His promising results on a set of

benchmark data has shown and sparked the exploitation

of ANN in solving caching problems.

A significant performance improvement in

employing ANN in computer cache memory for data

clustering shows that further exploration of executing

this technique in Web caching is possible.

The relative performance of ANN in various

applications is assorted towards different applications

(e.g.: performance analysis, prediction, and data

clustering). Performance of various methods and

policies in Web caching should be visible once

exploring the capabilities of ANN in Web caching.

Selecting the best value for each user predefined values

such as learning rate and error tolerance is needed in

ANN for better results. These selections will affect the

forecasting ability of the network in Web caching.

By employing ANN algorithm and PSO for the

caching scheme analysis in selecting cache objects, a

chosen input need to be set up to visualize and handle

the environment of the Web caching system. Selection

of best input variables, critical components and

variables of affected server, contemporary caching

approaches, and end users’ need to be analyzed to

obtain better solutions. The end user perspective is

particularly important for online applications; while a

perspective from a single monitoring server is adequate

for most infrastructure applications. Several steps are

involved to conduct the performance and evaluation of

ANN algorithm and PSO in Web caching. Figure 3

depicts the workflow of the proposed intelligent Web

caching architecture [9].

The proposed intelligent Web caching has been

integrated into a workable prototype to detect the log

data for better analysis and visualization.

5. The log data detection tool

The log data detection is a tool to verify which

request data should be cache or not to be cached into

the Web server. The standard Web cache fills requests

from the Web server, stores the requested information

locally, and sends the information to the client.

If the Web cache gets a request for the similar

information in the future, it simply returns local cached

data instead of searching over the Internet. On the other

hand, this tool fills request from the Web server and

determine which request should be stored locally using

Soft Computing (SC) approach.

Figure 3. Workflow of intelligent Web caching

5.1. Preprocessing and normalize data

The preprocessing is the key component in Web

cache. The log data (on 14 January 2008) are obtained

from one of e-learning@UTM server at the Centre of

Information Technology and Communication, UTM.

Three common attributes have been identified in Web

performance analysis [10][11]. Figure 4 shows the

actual data prior to data preprocessing, the

preprocessing and normalizing data. The attributes

used in this study are:
1. Time - the counter that observes the time takes to

receive a data in seconds (sec.).

2. Script Size – the size is expressed in bytes and

kilobytes.

3. Numbers of Hit - the number of hits per data. Each

completed request for a Web file will increase the

Number of Hit for requested file.

Each attribute must be multiplied with defined Priority

Value (PV) [12] to get the total of the attributes for

target output generation of the network. An example is

shown as:

Expected target = (size *0.266667) + (hit *0.200000) +

(time *0.066667)

The total value determines the expected target for

current data. The total value is compared to a threshold

number, and this threshold values are dynamic. A new

threshold calculation is proposed based on the latency

ratio on singular hit rate data [12].

The threshold is calculated and updated for every

epoch of the training. If the expected_target is smaller

than the threshold, then the expected target would be 0,

else it becomes 1 if the expected_target is equal to the

threshold and greater as shown below:

The network incorporates simplicity in generating

output for the web caching to cache or not to cache.

For each output generated from the non-training mode,

the outputs can be illustrated by employing sigmoid

function that bounded between 0 and 1. For each

output values that represent between the interval of

[0.5,1], the data will be cached in the caching storage,

and for each output that represent values less than 0.5

the data will be fetched directly from the originating

database resource in case the data is not found in the

cache storage.

Normalization process (see figure 4) is done by

determine the maximum and minimum value for each

attribute. The end values are between 0 and 1 and it is

to improve training characteristics.

5.2. Training and testing

The training process is done to train the ANN to

generate the desirable output. The process also finds

the suitable weight in ANN so that it can generate

output that is within the given minimum error.

Furthermore, the hidden layer and nodes play crucial

roles in mapping the precise weight for the network

output. It is the role of the hidden nodes in the hidden

layer that allow ANN to identify the feature, to capture

the pattern in the web performance data, and to perform

complex nonlinear mapping between input and output

variables.

In this paper, the number of hidden nodes is

determined by using 2n+1 [13]. The number of output

nodes is relatively easy to specify as it is directly

related to the undertaken problem. In this study, only

one output node is needed; about the decision to cache

or not to cache the data. PSO parameters for web

caching are assigned as:
Number of particle = 7

Global cognitive (C1) = 1.4

Local cognitive (C2) = 1.4






<
=

≥

0 if expected_ target ,

1 if expected_ target .
threshold

Expected Network Output
threshold

No

Begin

Fetch data
(log data, client request)

Pre-process data
(no. of hits, time, etc)

Apply ANN and PSO
method to the data

Cache?

Server array
 full?

Data already
cache?

Eliminate Least
Frequently Used

data

Yes

Yes

No

Put data to cache

Send data to client

End

Yes

No

Time step (DT) = 0.1

Inertia Weight = 0.729844

Minimum error or stopping condition (Fitness error) =

0.005

Figure 5 illustrates the training process of PSO and

BP. It shows that with minimum iteration, the training

process has met the stopping condition. The details of

network architecture are as follow:
Input node = 3

Hidden node = 7

Output node = 1

Number of particle = 14

From the training, we find that the mean squared

error (MSE) for PSO and BP are 0.0049 and 1. The

number of training iteration for PSO and BP algorithm

are 399 and 20002. The testing process is done to

determine the accuracy of the output generated by the

ANN and PSO if new or the existing value is used. The

accuracy is done base on the difference result between

the actual value, BP and the generated value by the

ANN and PSO. In this study, the accuracy is measured

as follows:

Based on this equation, the accuracy of PSO is 99.2%

and BP is 98.7%. It depicts that the accuracy of PSO is

higher than BP.

5.3. Simulation result

Figure 6 shows that the process of Web caching to

determine the total size that can be reached in the cache

server. The total size of data web cache using PSO

process (data after the training) is smaller compare to

the actual data and BP. This is proof that the process in

the intelligent cache server is faster compare to the

original cache server and BP. Consequently, the extra

space can be used for the other cache server process.

6. Conclusions and future work

In this study, an integration of PSO and ANN in

Web caching technology is promising in alleviating the

congestion of Internet access mainly for e-

learning@UTM. Therefore, this study has proven that

the intelligent cache server is smarter contrast to the

original cache server. Hence, this situation will affected

the size of data in the cache server and time to retrieve

the data from the cache server. In the future, we will

evaluate the performance analysis of other hybrid soft

computing techniques to the Web caching technology

for e-learning@UTM.

7. Acknowledgement

This work is supported by MOSTI and RMC,

Universiti Teknologi Malaysia (UTM), MALAYSIA.

Authors would like to thank Soft Computing Research

Group, Faculty of Computer Science and Information

System and Centre of Teaching and Learning, UTM for

their cooperation in making this study a victory.

8. References

[1] Web Caching. Caching Tutorial for Web Authors. 2008.

Available from

http://www.web-caching.com/mnot_tutorial/intro.html.

[2] Nagaraj, S. V., Web Caching and Its Applications.

Kluwer Academic Publishers, Boston/Dordrecht/London,

2004.

[3] Krishnamurthy, B. and Rexford, J., Web Protocols and

Practice: HTTP 1.1, Networking Protocols, Caching and

Traffic Measurement. Addison Wesley, 2001.

[4] Cao, P., Zhang, J., and Beach, K., Active Cache:Caching

Dynamic Contents on The Web. Distributed Systems

Engineering, 6(1): 1999, pp. 43-50.

[5] Forkan, F., Sulaiman, S., and Mohammed, F., Artificial

Life and Artificial Neural Network – A Comparison Study,

The 3rd International Seminar on Information and

Communication Technology, ICTS, Surabaya, Indonesia,

Faculty of Information Technology, Sepuluh Nopember

Institute of Technology, 2007, pp.181-185.

[6] Eberhart, R. C., and Shi Y., “Particle Swarm

Optimization: Development, Application and Resources”,

Evolutionary Computation, Volume 1, 2001, pp.27-30.

[7] Kennedy, J., and Eberhart, R. C., Particle Swarm

Optimization, Proc. IEEE Int’l Conf. on Neural Networks IV,

Piscataway, 1995, pp.1942 – 1948.

[8] Hammami, O., Towards Self Organizing Cache

Memories Using Neural Networks, University of Aizu, under

Fukushima. Grant, Japan, 1996, pp.965-80.

[9] Sulaiman, S., Shamsuddin, S.M., Forkan, F. and

Abraham, A., Intelligent Web Caching Using

Neurocomputing and Particle Swarm Optimization

Algorithm, Second Asia International Conference on

Modeling and Simulation, AMS 2008, IEEE Computer

Society Press, USA, 2008, pp. 642-647.

[10] Rousskov, A., and Soloviev, V., On Performance of

Caching Proxies, Short version appears as poster paper in

ACM SIGMETRIC’98 Conference, 1998.

[11] Liu M., Wang F. Y., Zeng D., and Yang L., An

Overview of World Wide Web Caching, IEEE International

Conference on. Systems, Man, and Cybernatics, Volume 5,

2001, pp.3045-3050.

[12] Koskela, T., Neural Network Method in Analysing and

Modelling Time Varying Processes, PhD dissertation,

Helsinki University of Technology, 2004.

[13] Lippmann, R.P., An Introduction to Computing with

Neural Net, IEEE ASSP Magazine, April, 1987, pp. 4-22.

[14] S. M. Shamsuddin, M. N. Sulaiman, & M. Darus.

2001. An Improved Error Signal of Back propagation Model

Number of correct data
100%

Total data
Accuracy = ×

for Classification Problems. International Journal of

Computer Mathematics, UK, 76(2):297-305, Taylor and

Francis Group.

Figure 4. Example data, preprocess and normalize data

Figure 5. Training process of data

Figure 6. Simulation result of total document size

