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Abstract: This chapter outlines an intelligent fuzzy multi-criteria decision-making 
(MCDM) model for appropriate selection of a flexible manufacturing system 
(FMS) in a conflicting criteria environment. A holistic methodology has been 
developed for finding out the “optimal FMS” from a set of candidate-FMSs. 
This method of trade-offs among various parameters, viz., design parameters, 
economic considerations, etc., affecting the FMS selection process in an 
MCDM environment. The proposed method calculates the global priority 
values (GP) for functional, design factors and other important attributes by  
an eigenvector method of a pair-wise comparison. These GPs are used as 
subjective factor measures (SFMs) in determining the selection index (SI).  
The proposed fuzzified methodology is equipped with the capability of 
determining changes in the FMS selection process that results from making 
changes in the parameters of the model. The model achieves balancing among 
criteria. Relationships among the degree of fuzziness, level-of-satisfaction and 
the SIs of the MCDM methodology guide decision makers under a tripartite 
fuzzy environment in selecting their choice of trading-off with a predetermined 
allowable fuzziness. The measurement of level-of-satisfaction during making 
the appropriate selection of FMS is carried out. 
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1. INTRODUCTION

A flexible manufacturing system (FMS) is a set of integrated computer-
controlled, automated material handling equipments and numerical-controlled 
machine tools capable of processing a variety of part types. Due to the 
competitive advantages like flexibility, speed of response, quality, reduction 
of lead-time, reduction of labour etc., FMSs are now gaining popularity in 
industries.

Today’s manufacturing strategy is purely a choice of alternatives. The 
better the choice, more will be the productivity as well as the profit 
maintaining quality of product and responsiveness to customers. In this era 
of rapid globalization, the overall objective is to purchase a minimum 
amount of capacity (i.e., capital investment) and utilize it in the most 
effective way. Although FMS is an outgrowth of existing manufacturing 
technologies, its selection is not often studied. It has been a focal point in 
manufacturing related research since the early 1970s. FMS provides a low 
inventory environment with unbalanced operations unique to the 
conventional production environment. The process design of an FMS 
consists of a set of crucial decisions that are to be made carefully. It requires 
decision making, e.g., selection of a CNC machine tool, material handling 
system, or product mix. The selection of a FMS thus requires trading-off 
among the various parameters of the FMS alternatives. The selection 
parameters are conflicting in nature. High-quality management is not enough 
for dealing with the complex and ill-structured factors that are conflicting in 
nature (Buffa, 1993). Therefore, there is a need for sophisticated and 
applicable technique to help the decision makers for selecting the proper 
FMS in a manufacturing organization. 

The authors, thus, propose a DSS methodology, for appropriate FMS 
selection, that trade off among some intangible criteria as well as cost factors 
to get the maximum benefit out of these conflicting-in-nature criteria. There 
have been many contributors to the literature on selection of proper FMS. A 
selective review of some of the relevant works in this area is give here. 
Kaighobadi and Venkatesh (1994) presented an overview and survey of 
research in FMSs. They also presented a definition of FMSs. Chen et al. 
(1998) investigated the relationship between flexibility measurements and 
system performance in the flexible manufacturing systems environment. The 
authors suggested several alternative measures for the assessment of 
machine flexibility and routing flexibility—two of the most important 
flexibility types discussed in the literature. Nagarur (1992) showed that 
computer integration and flexibility of the system were the two critical 
factors of FMS. Eight different types of flexibility were proposed by Browne 
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the system to cope with possible changes in demand structure. In addition to 
machine, process, product, routing, volume, expansion, operation and 
production flexibility as described by Browne et al. (1984). Barad and Sipper 
(1988) introduced another classification, i.e., transfer flexibility. Buzacott 
and Mandelbaum (1985) defined flexibility as the ability of a manufacturing 
system to cope with changing circumstances. High-level flexibility enables a 
manufacturing firm to provide faster response to market changes maintaining 
high product quality standards (Gupta and Goyal, 1989). 

Flexible manufacturing provides an environment where integration 
effects cannot be eliminated (Lenz, 1988). If the inventory is raised,  
the manufacturing environment becomes that of the job shop type. On the 
contrary, if the operations are balanced, the environment becomes that of the 
transfer line. The changes in production are related to both inventory 
changes as well as changes in flow time. Three variables determine the 
amount of integration effects that result in a production process. These are 
inventory level, balanced loading, and flexibility. Inventory level is 
quantified by counting the number of parts that are active in the production 
process. Balanced loading can be quantified by the use of flow time. The use 
of flow time is to measure the balance within a production facility, and it is 
derived from the transfer line. The flow time provides a means to measure 
the balance between station loads in any type of production facility. 
Flexibility can be measured by the variability of the flow time. A process 
with greater degree of flexibility will provide less variability to the flow 
time.

Meredith and Suresh (1986) addressed justification of economic analysis 
and of analytical and strategic approaches in advanced manufacturing 
technologies. Evaluation of FMS alternatives was earlier carried out by 
Miltenburg and Krinsky (1987). They analyzed traditional economic 
evaluation techniques for the evaluation. Nelson (1986) formulated a scoring 
model for FMS project selection. Performance measures, viz., quality and 
flexibility, were also quantified in the scoring model. Use of the analytic 
hierarchy process (AHP) for evaluation of tangible and intangible benefits 
during FMS investment was reported by Wabalickis (1988). Stam and Kuula 
(1991) developed a two-phase decision support procedure using AHP and 
multi-objective mathematical programming for selection of FMS. 
Sambasivarao and Deshmukh (1997) presented a DSS integrating multi-
attribute analysis, economic analysis and risk evaluation analysis. They have 
suggested AHP, TOPSIS (technique for order preference for similarity to 
ideal solution), and a linear additive utility model as an alternative multi-
attribute analysis model. Shang and Sueyoshi (1995) formulated a model of 
simulation and data envelopment analysis (DEA) along with AHP for FMS 
selection. Karsak and Tolga (2001) proposed a fuzzy-MCDM approach for 
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evaluation of advanced manufacturing system investments considering 
economic and strategic selection criteria. Karsak (2002) proposed a robust 
decision-making procedure for evaluating FMS using a distance-based 
fuzzy-MCDM philosophy.

Some researchers (Chen et al., 1998; Evans and Brown, 1989) believe 
that qualitative benefits cannot be considered mathematically unless one uses 
a knowledge-based system. This dissertation outlines a mathematical 
approach based on the judgmental values of a decision maker that can help 
decision makers in selecting the cost-effective FMS. 

Abdel-Malek and Wolf (1991) propose a “measure” for the decision-
making process. The said “measure” ranks different competing FMS designs 
according to their inherent flexibility as they relate to the maximum 
flexibility possible stipulated by the state-of-the-art. In developing the 
proposed “measure,” the attributes governing the flexibility of FMS major 
components are defined. A notion of “strings” representing alternative 
production routes for different products is set forth. The method allows the 
integration of the eight points of flexibility stated by Browne et al. (1984) 
into a single comprehensive flexibility indicator. 

Elango and Meinhart (1994) provide a framework for selection of an 
appropriate FMS using a holistic approach. The selection process considers 
operational and financial aspects. Furthermore, their selection process is 
consistent with industry, market, organizational, and other strategic needs. 

A DSS for dynamic task allocation in a distributed structure for flexible 
manufacturing systems FMS has been developed by Trentesaux et al. (1998). 
An entity of the manufacturing system is considered as an autonomous 
agent, called the integrated management station (IMS), able to cooperate 
with other agents to achieve a global production program. Cooperation is 
performed by exchanging messages among the different agents. The 
characteristics of a DSS that supports multi-criteria algorithms and 
sensitivity tests is presented in Trentesaux et al. (1998). This DSS is 
integrated to each decision system of every IMS. Trentesaux et al.’s (1998) 
research work aims at allocating tasks in a dynamic way by proposing to the 
human operator a selection of possible resources. 

Sarkis and Talluri (1999) disclose a model for evaluating alternative 
FMSs by considering both quantitative and qualitative factors. The 
evaluation process uses a DEA model, which incorporates both ordinal and 
cardinal measures. The model provides pair-wise comparisons of specific 
alternatives for FMSs. The consideration of both tangible and intangible 
factors is achieved in their methodology. The analysis of results provides 
both seller’s and buyer’s perspectives of FMS evaluation. 

The decision-making process for machine-tool selection and operation 
allocation in a FMS usually involves multiple conflicting objectives. Rai et al. 
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(2002) address application of a fuzzy goal-programming concept to model 
the problem of machine-tool selection and operation allocation with explicit 
considerations given to objectives of minimizing the total cost of machining 
operation, material handling, and set up. The constraints pertaining to the 
capacity of machines, tool magazine, and tool life are included in the model. 
A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy 
goal-programming model. 

Advanced computing/communications technology is present in virtually 
all areas of manufacturing. In the near future, a totally computer-controlled 
manufacturing environmental will be a realistic expectation (Haddock and 
Hartshorn, 1989). The integration and enhancement of both computer-aided 
design (CAD) and computer-aided manufacturing (CAM) represents the 
foundations for achieving a totally integrated manufacturing system. 

The requirements for increased responsiveness to market and the 
demands for shorter product introduction times underline the need for a 
coherent formal approach toward equipment selection to support the 
knowledge and experience of the engineers entrusted with this important 

decision making in manufacturing system design, the search for the right 
structure depends on the capability of the designers to compare different 
solutions using common approaches in an integrated decision-making 
environment (Gindy and Ratchev, 1998). 

Thus, machine tool selection has strategic implications that contribute to 
the manufacturing strategy of a manufacturing organization (Yurdakul, 
2004). In such a case, it is important to identify and model the links between 
machine tool alternatives and manufacturing strategy (Yurdakul, 2004). 

Haddock and Hartshorn (1989) present a DSS that assists in the specific 

selection will depend on part characteristics, which are labeled in a part code 
and correlated with machine specifications and qualifications. The choice of 
the optimal machine, versus possible alternates, is made by a planner 
comparing a criterion measure. Some possible criteria for selection as 
suggested by Haddock and Hartshorn (1989) are the relative location of 
machines, machining cost, processing time and availability of a machine. 

Tabucanon et al. (1994) propose an approach to the design and 
development of an intelligent DSS that is intended to help the selection 
process of alternative machines for FMS. The process consists of a series of 
steps starting with an analysis of the information and culminating in a 
conclusion—a selection from several available alternatives and verification 
of the selected alternative to solve the problem. The approach combines the 
AHP technique with the rule-based technique for creating expert systems 
(ESs). This approach determines the architecture of the computer-based 

task (Gindy and Ratchev, 1998). With the increasing complexity of the

selection of a machine required to process specific dimensions of a part. The
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environment necessary for the decision support software system to be 
created. It includes the AHP software package (Expert Choice), Dbase III + 
DBMS, Expert System shell (EXSYS), and Turbo Pascal compiler (for the 
external procedural programs). A prototype DSS for a fixed domain, namely 
a CNC turning center that is required to process a family of rotational parts, 
is developed. Tabucanon et al.’s (1994) methodology helps the user to find 
the most “satisfactory” machine on the basis of several objective as well as 
subjective attributes. 

Flexible manufacturing cells (FMCs) have been used as a tool to 
implement flexible manufacturing processes to increase the competitiveness 

decision makers encounter the machine selection problem, including 
attributes, e.g., machine type, cost, number of machines, floor space, and 
planned expenditures (Wang et al., 2000). Wang et al. (2000) propose a 
fuzzy multiple-attribute decision-making (FMADM) model to assist the 
decision maker to deal with the machine selection problem for an FMC 
realistically and economically. In their work, the membership functions of 
weights for those attributes are determined in accordance with their 
distinguishability and robustness when the ranking is performed. 

AHP is widely used for tackling FMS selection problems due to the 
concept’s simplicity and efficiency (Sambasivarao and Deshmukh, 1997). 
But AHP, as it is, do not take into consideration tangible factors, such as cost 
factors (Saaty, 1980, 1986, 1990). Thus, there is a need to allow cardinal 
factors in AHP to make the model robust and more efficient. In this chapter, 
a robust MCDM procedure is proposed using AHP that incorporates 
qualitative as well as quantitative measures for the FMS selection problem. 
The methodology proposed is very useful first to quantify the intangible 
factors in a strong manner and then to find out the best among member 
alternatives depending on their cost factors. 

Some researchers believe that qualitative benefits cannot be considered 
mathematically unless one uses a knowledge-based system (Chen et al., 
1998; Evans and Brown, 1989). This chapter outlines a fuzzified intelligent 
approach based on the judgmental values of the decision maker in selecting 
the most cost-effective FMS. One objective of this chapter is to find out 
fuzziness patterns of FMS selection decisions having a disparate level-of-
satisfaction of the decision makers. Another objective is to provide a robust, 
quantified monitor of the level of satisfaction among decision makers and to 
calibrate these levels-of-satisfaction against decision makers’ expectations. 

of manufacturing systems (Wang et al., 2000). In implementing an FMC,
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2. FMS SELECTION PROBLEM 

As a first step in testing the MCDM model proposed in the previous chapter, 
the authors have illustrated an example with FMS selection. Six different 
types of objective cost components have been identified for the selection 
problem. The total costs of each alternative are nothing, but the objective 
factor costs (OFCs) of the FMSs (refer to Table 1). The task is to select the 
best candidate-FMS among five candidate-FMSs. 

Table 1. Cost Factor Components 

FMS/OFCs S1 S2 S3 S4 S5

1. Cost of Acquisition 1.500 0.800 1.300 1.00 0.900 
2. Cost of Installation 0.075 0.061 0.063 0.053 0.067 
3. Cost of Commissioning  0.063 0.052 0.055 0.050 0.061 
4. Cost of Training 0.041 0.043 0.046 0.042 0.040 
5. Cost of Operation 0.500 0.405 0.420 0.470 0.430 
6. Cost of Maintenance 0.500 0.405 0.420 0.470 0.430 
Total Cost (OFC) 2.239 1.431 1.949 1.669 1.550 
Objective Factor Measure (OFMi) 0.154 0.241 0.177 0.206 0.222 

The subjective attributes influencing the selection of FMS are shown  
in Table 2. The study consists of five different attributes, viz., flexibility in 
pick-up and delivery, flexibility in the conveying system, flexibility in 
automated storage and retrieval system, life expectancy/payback period, and 
tool magazine changing time. One may consider other attributes appropriate 
to selection of FMS. The attributes influencing the FMS selection problem 
are shown in Table 2. 

Table 2. Attributes Influencing the FMS Selection Problem 

Factor I Factor II Factor III Factor IV Factor V 
Flexibility in 
pick-up and 
delivery

Flexibility in 
conveying
system

Flexibility in 
automated
storage and 
retrieval system 

Life
expectancy/pay 
back period 

Tool
magazine
changing
time

The MATLAB® fuzzy toolbox has been used in this work wherein a 
logical intelligent rule has been coded in M-file suitably using the designed 
MF.
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3. SIMULATION USING MATLB®

The most important task for a decision maker is the selection of the factors. 
Thorough representation of the problem indicating the overall goal, criteria, 
sub-criteria (if any), and alternatives in all levels maintaining the sensitivity 
to change in the elements is a vital issue. The number of criteria or 
alternatives in the proposed methodology should be reasonably small to 
allow consistent pair-wise comparisons.  

Matrix 1 is the decision matrix based on the judgmental values from 
different judges. Matrices 2 to 6 show comparisons of the weightages for each 
attribute. Matrix 7 consolidates the results of the earlier tables in arriving at the 
composite weights, i.e., SFMi values, of each of the alternatives. 

Matrix 1. Decision matrix (I.R. = 4.39%)

Matrix 2. Pair-wise comparison matrix for ‘F1’ (I.R. = 4.48%) 

Matrix 3. Pair-wise comparison matrix  

1 5 3 4 5

1 1 11 1
5 3 2
1 =  3 1 3 5
3
1 12 1 3
4 3
1 1 11 1
5 5 3

D

2

1 7 3 5 6

1 1 1 11
7 4 3 2
1 =  4 1 3 4
3
1 13 1 2
5 3
1 1 12 1
6 4 2

A

1

1 3 2 5 4

1 11 5 2
3 3
1 =  3 1 4 3
2
1 1 1 11
5 5 4 3
1 1 1 3 1
4 2 3

A
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5

11 5 7 4
3

3 1 5 6 4

1 1 1 =  1 2
5 5 2
1 1 1 11
7 6 2 3
1 1 2 3 1
4 4

A

0.471 0.076 0.259 0.131 0.063
0.408 0.512 0.366 0.273 0.305
0.159 0.051 0.104 0.501 0.458

 = 
0.279 0.246 0.338 0.103 0.074
0.050 0.117 0.151 0.075 0.047
0.103 0.075 0.040 0.047 0.116

G

Matrix 4. Pair-wise comparison matrix  for F2 (I.R. = 3.32%) for  
F3 (I.R. = 1.88%) 

Matrix 5. Pair-wise comparison matrix  

Matrix 6. Pair-wise comparison matrix for F4 (I.R. = 6.22%) and for  
F5 (I.R. = 6.87%) 

Matrix 7. Final matrix to find out Global Priority 

In the proposed methodology, the unit of OFC is US$, whereas the 
objective factor measure (OFM) is a non dimensional quantity. Correspon-

3

1 4 1 3 7

1 1 11 5
4 4 2

 =  1 4 1 2 7

1 12 1 3
3 2
1 1 1 1 1
7 5 7 3

A

4

11 5 3 6
3

3 1 5 7 6

1 1 =  1 2 3
5 5
1 1 1 1 2
3 7 2
1 1 1 1 1
6 6 3 2

A
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dingly, the SI is also a non-dimensional quantity. The higher the SI values, 
the better would be the selection. The value of the objective factor decision 
weight ( ) lies between 0 and 1. For  = 0, SI = SFM; i.e., selection is solely 
dependent on subjective factor measure values found from AHP and SFM 
values dominate over OFM values. There is no significance of considering 
the cost factor components for  = 0. For  = 1, SI = OFM; i.e., OFM values 
dominate over the SFM values, and the FMS selection is dependent on OFM 
values only. For  = 1, the cost factors get priority over the other factors. 
Keeping this in mind, the values of  are taken in between 0 and 1. To verify 
the practicality and effectiveness of the final outcome of the proposed 
methodology, sensitivity analysis is done. 

The basic fuzzified equation governing the selection process is recalled 
once again. It is to be remembered that the Eq. (1) (Wabalickis, 1988) uses 
MF as depicted by Eq. (2).  

SFM
LSI

LSI LSI 1LSI LSI ln 1
i

i

U L
i L

A
C

 (1) 

1
0.999

1
0.001
0

a

a

a b
x

b

b

x x
x x

Bx x x x
Ce

x x
x x

 (2) 

The intelligent decision algorithm generates the coefficients of the fuzzy 
constraints in the decision variables. The rule first declares a function Cj and 
assigns the constants in the MF. The aim is to produce a rule that works well 
on previously unseen data, i.e., the decision rule should “generalize” well. 
An example is appended below: 

function [cj] = mpgen(cj0,cj1,gamma,mucj) 
B = (0.998 / ((0.001 × exp(gamma))  0.999)); 
A=0.999 × (1 + B); 
cj=cj0 + ((cj1  cj0) / gamma) × (log((1 / B) × ((A / mucj)  1))); 

The rule supports this work by allowing the call to the function to contain 
a variable, which is automatically set to different values as one may request. 
The logical way in which the intelligent fuzzy-MCDM acts as an agent in the 
entire system includes many if  else rules. 

A. Bhattacharya et al.



FMS Selection Using a Fuzzy-MCDM Model 

3.1 Fuzzy Sensitivity of the MCDM Model 

In a real-life situation, the decision environments rarely remain static. 
Therefore, it is essential to equip the proposed decision-making model with 
the capability to determine changes in the selection process that results from 
making changes in the parameters of the model. So, the dynamic behavior of 
the optimal selection found from the proposed methodology can be checked 
through the fuzzy-sensitivity plots. 

Among all the FMSs, FMS1 has the highest SI value when the objective 
factor decision weight lies between 0.33 and 1.00. However, FMS2 would be 
preferred to other FMS candidate-alternatives when the value of level-of-
satisfaction lies between 0.00 and 0.33. 

The appropriate value of the level-of-satisfaction is to be selected 
cautiously. The reason behind this is as follows. The higher the  value, the 
dominance of the SFMi values will be higher. The lower the  value, more 
will be the dominance of cost factor components, and subsequently, the 
intangible factors will get less priority. 

Table 3 illustrates the final ranking based on the proposed model. From the 
Table 3 and Figures 16 to 20 ranking of the candidate-alternatives is FMS1
FMS2  FMS3  FMS5  FMS4, i.e., FMS1 is the best alternative at decision 
maker’s level-of-satisfaction  = 0.42. Table 3 is a clear indication of 
accepting the proposed methodology for the selection problem in a 
conflicting-criteria environment. 

Relationship between the degree of fuzziness, , versus level-of-
satisfaction ( ) has been depicted for all candidate-FMSs by Figures 1 to 5. 
This is a clear indication that the decision variables allow the MCDM model 
to achieve a higher level-of-satisfaction with a lesser degree of fuzziness. 
Figures 6 to 10 and 11 to 15 delineate SI indices versus level-of-satisfaction 
( ) and SI indices versus degree of fuzziness ( ), respectively. 
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Figure 1. Fuzziness ( ) vs.  contour plot 
for FMS1

Figure 2. Fuzziness ( ) vs.  contour plot 
for FMS2
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 Figure 3. Fuzziness ( ) vs.  contour plot 
for FMS3

Figure 4. Fuzziness ( ) vs.  contour plot 
for FMS4

Figure 5. Fuzziness ( ) vs.  contour plot 
for FMS5

Figure 6. SI vs.  contour plot for FMS1

Figure 7. SI  vs.  contour plot for FMS2 Figure 8. SI vs.  contour plot for FMS3
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Figure 9. SI vs.  contour plot for FMS4 Figure 10. SI vs.  contour plot for FMS5

Figure 11. SI vs.  contour plot for FMS1 Figure 12. SI vs.  contour plot for FMS2

Figure 13. SI vs.  contour plot for FMS3 Figure 14. SI vs.  contour plot for FMS4
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Figure 15. SI vs.  contour plot for FMS5 Figure 16. Fuzzy-sensitivity for FMS1

Figure 17. Fuzzy-sensitivity for FMS2 Figure 18. Fuzzy-sensitivity for FMS3

Figure 19. Fuzzy-sensitivity for FMS4                 Figure 20. Fuzzy-sensitivity for FMS5
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Combining the plots as illustrated in Figures 1 15, one gets Figures 
16 20. These figures elucidate 3-D mesh and contour plots. Basically Figures 
16 20 illustrate fuzzy-sensitivity indicating relationships among SI indices, 
and . Furthermore, from these plots, it is seen that the decision variables, as 
defined in Eq. (1), allow the MCDM model to achieve a higher level-of-
satisfaction ( ) with a lesser degree of fuzziness ( ).

Table 3. Ranking of the Systems 

Candidate-FMS SIi Rank # 
FMS1 0.249 #1
FMS2 0.224 #2
FMS3 0.210 #3
FMS4 0.155 #5
FMS5 0.162 #4

According to Table 3, the best alternative is FMS1 with the selection 
index of 0.249. The worst alternative is FMS4 with the selection index of 
0.155.

4. GENERAL DISCUSSIONS AND CONCLUSION 

This chapter outlined an intelligent fuzzy-MCDM model for appropriate 
selection of an FMS in a conflicting criteria environment. The proposed 
method calculates the GP for functional, design factors and other important 
attributes by eigenvector method of pair-wise comparison. These GPs are 
used as SFMs in determining SI. 

In a real-life situation, the decision environments rarely remain static. So, 
the dynamic behavior of the optimal selection found from the proposed 
methodology has been checked through the fuzzy-sensitivity plots. Figures 
16 20 teach an interesting phenomenon that is found in nature. At a lower 
level-of-satisfaction ( ), the chances of getting involved in a higher degree of 
fuzziness ( ) increase. Therefore, a decision maker’s level-of-satisfaction 
should be at least moderate in order to avoid higher degree of fuzziness while 
making any kind of decision using the proposed MCDM model delineated in 
the previous chapter. 

The methodology proposed is very useful first in quantifying the 
intangible factors in a strong manner and then in finding out the best among 
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the alternatives depending upon their cost factors. Contrary to the traditional 
way of selection using discounted cash flow (DCF), this methodology is a 
sound alternative to apply under an unstructured environment. The fuzzy-
sensitivity strengthens the validity of the proposed methodology. It verifies 
the practicability as well as the effectiveness of the proposed DSS method. 

It is not possible for an individual to consider all the factors related to 
FMS as follows: 

FMSs are available in a wide range, 
Performance standards of the systems are not uniform, and 
Expression of capabilities and performance attributes among manufacturers 
are inconsistent and incommensurable.

Thus, a decision-making expert system may help the decision maker in 
selecting the most cost-effective FMS considering the conflicting-in-nature 
factors of the systems. 

The selection problem of FMS is complex due to the high capital costs 
involved and to the presence of multiple conflicting criteria. One can reduce 
investment and maintenance costs, increase equipment utilization, increase 
efficiency, as well as improve facilities layout by selecting the right system 
suitable for the operations to be carried out. 
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