
Evolution Induced Secondary Immunity:

An Artificial Immune System based Intrusion Detection System

Divyata Dal1, Siby Abraham2, Ajith Abraham3, Sugata Sanyal4 and Mukund Sanglikar5

1University Department of Computer Science, University of Mumbai, India

2Department of Mathematics, Guru Nanak Khalsa College, University of Mumbai, India
3Norwegian center Of Excellence, Q2S, Norwegian University of Science and Technology, Norway

4School of Tech. and Computer Science, Tata Institute of Fundamental Research, Mumbai, India
5University Department of Computer Science, University of Mumbai, India

 divyata1711@gmail.com, sibyam@gmail.com, ajith.abraham@ieee.org, sanyal@tifr.res.in,

masanglikar@rediffmail.com

Abstract

The analogy between Immune Systems and Intrusion

Detection Systems encourage the use of Artificial Immune

Systems for anomaly detection in computer networks. This

paper describes a technique of applying Artificial Immune

System along with Genetic algorithm to develop an

Intrusion Detection System. Far from developing Primary

Immune Response, as most of the related works do, it

attempts to evolve this Primary Immune Response to a

Secondary Immune Response using the concept of

memory cells prevalent in Natural Immune Systems. A

Genetic Algorithm using genetic operators- selection,

cloning, crossover and mutation- facilitates this. Memory

cells formed enable faster detection of already

encountered attacks. These memory cells, being highly

random in nature, are dependent on the evolution of the

detectors and guarantee greater immunity from anomalies

and attacks. The fact that the whole procedure is

enveloped in the concepts of Approximate Binding and

Memory Cells of lightweight of Natural Immune Systems

makes this system reliable, robust and quick responding.

1. Introduction

An intrusion is defined as any set of actions that

attempt to compromise the integrity, confidentiality or

availability of a resource [1]. Intrusion Detection Systems

(IDS) are developed to safeguard the computer network

from these attacks.

In this paper, we attempt to use Artificial Immune

(AIS) System and Genetic Algorithm (GA) to develop an

IDS, which is host based and uses anomaly detection. The

proposed technique monitors all incoming requests on the

host and blocks it in case of an anomaly, thereby making

the system reactive. We use AIS to develop both Primary

and Secondary Immune Responses. Genetic Algorithm

facilitates the evolution of Secondary Immune Response

from the Primary Immune Response. The concept of

lightweight, which is an important feature of Natural

Immune System, has been incorporated during the

Primary and Secondary Immune Responses. The

uniqueness of this paper is the composite effect of

Genetic Algorithm and Artificial Immune System to

develop a Secondary Immune Response from Primary

Immune Response, the effectiveness of which is validated

by experimented results.

The different approaches to IDS have been narrated in

various papers [2][4][10][14][15]. Li [3] applies GA in

IDS by modeling network connection information as 57

gene chromosomes with hexadecimal representation. The

novel approach of Artificial Immune System was

developed to overcome the weaknesses of Network-based

IDS’s. An Artificial Immune System framework called

LISYS introduced by Forrest et al. [5] is specialized for

the problem of Network Intrusion Detection. It uses a 49-

bit compressed representation of TCP SYN packets

introduced by Hofmeyr [1][5][6][7]. Hofmeyr and Forrest

[5] discuss a secondary response, which is similar to our

work. They achieve the Secondary Response in two steps.

In the first step, the response of the mature detectors has

been provided with an extended lifetime during the

training stage. In the second step, a human intervention

not a system intervention, leads to the formation of a

memory detector.

This paper is organized as follows: Section 2 discusses

the system we have implemented. Section 3 analyzes the

experimental results and finally Section 4 presents the

concluding remarks of this work.

2. IDS-EVOLUSIRS

2.1. System Overview
Intrusion Detection System – Evolutionary Secondary

Immune Response System (IDS-EVOLUSIRS) is

developed in four stages:

1) Data Conversion

2) Generation and Training of Detectors

3) Intrusion Detection

4) Memory Cell Identification

Embedded in each stage is the concept of lightweight

of the Natural Immune System. It has been implemented

as follows:

Approximate Binding. A single detector is capable of

detecting any number of intrusions as long as the affinity

of the detector-intrusion binding is above a particular

threshold, thus enhancing the detection capability of the

intrusion detection system [11].

Memory Cells. A detector stores information about

previously detected intrusions. Storing these as memory

cells enables the system to respond quickly when the

same intrusions are encountered in the future [11][12].

Gene Expression. Detector diversity can be maintained

by generating a vast number of detectors from new

combinations of segments stored as memory cell,

ensuring the effective detection of a wide variety of

intrusions [9][12].

The concept of Approximate Binding is incorporated

in the training phase of detectors, whereas the Memory

Cells concept has been implemented in the detection stage

of the system. The concept of Gene Expression has not

yet been implemented in our system, but we plan to

incorporate it in the next phase of our system.

Table 1. Representation of fieldsTable 1. Representation of fieldsTable 1. Representation of fieldsTable 1. Representation of fields

2.2. Data Conversion
The IDS-EVOLUSIRS uses two datasets self and non-

self. The data is taken from the DARPA dataset, which is

a DARPA/MIT Lincoln Laboratory off-line intrusion

detection evaluation data set [13]. The following fields

have been considered in the order mentioned in [3].

1. Destination IP Address

2. Source IP Address

3. Destination Port Number

4. Duration

5. Protocol

6. Source Port Number

The requests are converted into binary strings of

length 134 by concatenating the fields in the order

mentioned, padding it with zeros wherever necessary. The

maximum value of each of the fields along with the length

of their equivalent binary strings is listed in Table 1:

Figure 1. Figure 1. Figure 1. Figure 1. Negative selection

Figure 2. Figure 2. Figure 2. Figure 2. Generation and training of detectors

2.3. Detector Generation
The detectors are represented as a set of randomly

generated binary strings that are trained to differentiate

between the self and non-self connections. Training is

Name of the Field Minimum and

Maximum Value

 Binary

Strings

Length

Destination IP Address 0.0.0.0 - 255.255.255.255 38 bits

Source IP Address 0.0.0.0 - 255.255.255.255 38 bits

Dest. Port No 0 – 65535 16 bits

Duration 0 – 999 seconds 10 bits

Protocol 0 – 65535 16 bits

Source Port No 0 – 65535 16 bits

done using the Negative Selection algorithm with the

intention of refining the detector set against the self and

the non self (intrusions). The refinement procedure, as

shown in Figure 1, uses a variation of the pattern

matching algorithm known as the r-Contiguous bits

algorithm. It discards any detectors matching the self,

thereby generating a new detector in its place.

The output is then trained against the non-self

connections using the same algorithm. The number of

contiguous bits (‘r’) matching the detector determines the

fitness of that detector, which in turn determines the

amount of affinity between the detector and the anomaly

string. Once the detector has been presented to all the self

and non-self connections, it forms the “Mature Detector

Set”, as shown in Figure 2, and is not subject to further

change. This detector set is used in the Primary Response

of the IDS-EVOLUSIRS.

Figure 3. Figure 3. Figure 3. Figure 3. IDS-EVOLUSIRS

2.4. Intrusion Detection
Once the training of the detectors is complete, it is

now ready to face a real time connection. On facing a

typical request from an anonymous and external node, the

system evaluates this request using the concept of the

fitness value to determine whether the request is an

anomaly or not. Higher the fitness value of the request,

greater is the possibility that the incoming request is an

anomaly. In case of IDS-EVOLUSIRS, this idea has been

extended. If a match is found at 13 contiguous locations,

we classify it as a hit, 13 contiguous locations being

specific to our system. But, the system is activated only if

3 or more sister detectors are activated by the request.

Thus, a request matching 3 or more detectors at 13 or

more contiguous locations classifies it as an anomaly as

shown in Figure 3.

2.5. Memory Cell Identification
The adaptive and evolutionary property of Genetic

algorithms has been used to evolve the highly fit sister

detectors activated when an anomaly has been

encountered. The genetic operators – selection, cloning,

crossover and mutation - have been used for this purpose.

When an anomaly is encountered, the sister detectors

activated as a result is called the set of “Activated

Detectors”, which are candidates for memory cells. Then,

the genetic operator of selection is applied to determine

which of these detectors should be cloned. The cloning

threshold is set by the following formula:

Cloning Threshold = Sum of fitness of all the detectors

 Total number of detectors

Those activated detectors having a fitness value

greater than or equal to the cloning threshold undergo the

cloning. The number of clones to be generated for the

candidate detectors is determined by the following

formula:

Number of Clones = Int{Fitness of detector*10 /

Total Fitness}

Once the process of cloning is complete, the clones

and the remaining activated detectors together form the

set of “Winner Detectors”.

Subjecting these Winner Detectors to the genetic

operators of Mutation and Crossover facilitates the

evolution of these detectors. After a substantial number of

generations, the detector with fitness value greater than all

the Winner Detectors is treated as a “Memory Cell”.

3. Experimental Results

The dataset used for the evaluation of our Intrusion

Detection System is the 1998 DARPA Intrusion Detection

Evaluation Data Set. Although this dataset is quite old, it

is nevertheless widely used to evaluate intrusion detection

systems. The ‘tcpdump.list’ files have been used for

training as well as testing of the system.

3.1. Experimental Setup
As stated in the Offline Evaluation Plan of the

DARPA Dataset, of the seven weeks of the 1998 dataset,

the first six weeks of data are used as training. This

comprises of 30,000 self records and 165 non self. The

seventh week of data is used to test the performance of

the IDS size of which is 5000 with 4019 self and 981 non-

self. The entire set of data is converted into binary strings

and a set of 100 binary strings is randomly generated to

represent potential detectors, each with the same length

(134 bits) as the data in the training dataset.

The Negative Selection algorithm used to train the

detectors uses the r-Contiguous bits algorithm to refine

the data against the non-self data set. The fitness ‘r’ of a

detector is defined as the number of contiguous matching

bits of the strings. A number of different values of ‘r’

have been tried. We have observed that for any value less

than or equal to 12, even the self data matches the

detectors. Further, for any value greater than or equal to

14, all the non-self data fails to match the detectors, and

the “Mature Detector Set” is not formed. In either case,

the Negative Selection algorithm fails. Thus, we have hit

upon a unique value of ‘r’ equal to 13, where IDS-

EVOLUSIRS is successful. The condition of activation of

a detector is that it must match at 13 or more contiguous

locations. Thus we have a single detector, which is

capable of detecting any number of intrusions as long as

the affinity of the detector-intrusion binding is above this

threshold value 13. This implements the concept of

approximate binding. However, for the recognition of a

string as non-self, after experimental results, we decided

that a minimum of 3 detectors must be activated by the

request. Therefore, an incoming request is classified as an

anomaly only when it matches at least 3 detectors, at at

least 13 or more contiguous locations. The detectors are

generated till these two conditions are met.

During training of the detector set, if a non-self

(anomaly) fails to match 3 or more detectors, the non-self

is classified as a hole. The proposed solution to this

problem is to randomly generate detectors till the anomaly

matches at least 3 detectors, therefore overcoming the

problem of holes.

Once training is complete, the system is now ready to

face real time requests. If a incoming request is classified

as an anomaly, the detectors are activated, constituting the

“Activated Detector Set” which undergoes the genetic

operations of selection, cloning, crossover and mutation.

After experimental analysis, the probabilities of mutation

and crossover have been fixed to 0.3 and 0.7 respectively.

A random number is generated, and depending on its

value, the selected detector or detectors undergo mutation

or crossover respectively. Mutation is performed by

randomly selecting a detector from the activated set and

deliberately complimenting the bits between two

randomly selected locations of the detector. Two-Point-

Crossover is performed on any two randomly selected

detectors by swapping the bits between two randomly

selected crossover points.

The above process of applying the genetic operators

continues till a detector having a fitness value greater than

all those in the “Winner Detector Set” is generated. This

detector then becomes a Memory Cell, and is stored in a

separate file aloof from the population of the detectors.

This memory cell is used to generate Secondary Immune

Response, should a similar anomaly attack the system in

the future. Detector diversity has been maintained by

creating a memory cell from the fittest detectors (“Winner

Detectors”) formed as a result of the process of Genetic

algorithm. During this process, the detectors mutate and

crossover, exchanging effective detector fragments,

resulting in the formation of a memory cell, which has a

higher fitness value than the “Winner Detectors”

participating in this process. This memory cell, therefore,

ensures more effective detection. In this manner we

implement the concept of Memory Cells in the system.

Table 2.Table 2.Table 2.Table 2. Content of distinct memory cells

3.2. Experimental Discussions
Distinct memory cells. On performing the experiment

using the “Mature Detector Set” on the test data,

comprising of both self as well as non self connections,

we conclude that the system was able to correctly classify

all the test data. The outcome of the experiment was to

have a set of memory cells of size 66. (This is subject to

slight variance each time the experiment is carried out

owing to the random nature of genetic operators)

The Table 2 summarizes the Primary Immune

Response, listing the first 5 detectors saved as memory

cells formed during exposure of the system to the test

data. A “NO” in column 7 of the table indicates the

formation of a new memory cell. On the other hand, if a

previously seen intrusion is encountered, it triggers

the Secondary Immune Response, resulting in a

memory cell detecting it, indicated by a “YES” in

column 7. The formation of memory cells was the result

of the use of Genetic algorithms for the evolution of the

Winner Detectors. Without the use of Genetic algorithms

in AIS, we would only have a history of past attacks, and

only attacks completely resembling the known attacks

could have been prevented.
Connections with same fitness value. During

experiments, it occurred to us that it was possible to have

memory cells with the same fitness values, but different

connections. Figure 4 shows the fitness values and the

corresponding number of distinct connections of 66

Dest IP Src IP Dst

Port

Conn

Dura

tion

Proto

-col

Src

Port

MC

Foun

d?

MC

Fit-

ness

208.239

003..255

202.072.

001. 077

138 0:0:1 207/

u

138 NO 28

172..016

112..050

202.072.

001.077

7 0:0:1 eco/i 7 NO 37

202..072

001..077

172..016

112..050

7 0:0:1 ecr/i 7 NO 22

172..016

112.050

010..000

001.020

514 0:0:1 syslo

g

514 NO 32

172.016

114.050

202..049

.244.010

143 0:0:1 imap 0 NO 38

distinct memory cells formed during the test period. The

problem of having the same fitness value with distinct

connections has been addressed by considering matching

of contiguous locations in addition to the usual

comparison of the fitness values. This helps in detecting

the already seen attacks in a much more reliable way.

FITNESS OF MEMORY CELLS FOR DIFFERENT CONNECTIONS

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Memory Cells

N
u
m

b
e
r

o
f
M

e
m

o
ry

 C
e
ll
s
 f
o
r

D
if
fe

re
n
t
F
it
n
e
s
s

Fitness of Memory Cell

Number of Hits for Different

Connections

Figure 4. Figure 4. Figure 4. Figure 4. Number of connections with the same
fitness

Dependence of memory cells on a particular field of

the connection. From Table 2, we conclude that the

fitness of a memory cell would vary each time the

experiment is run and that no specific field of the anomaly

is said to be important in the formation of a new memory

cell. However, it has been observed that, when an

anomaly is encountered for which a memory cell is

already present, most of the times, the Destination IP and

Source IP remain unchanged. But, the number of memory

cells formed for each Source IP and Destination IP

address varies.

NO. OF MEMORY CELLS CORRESPONDING TO SOURCE_IP

0

2

4

6

8

10

12

0
0
1
.0

0
1
.0

0
1
.0

0
1

0
0
1
.0

0
2
.0

0
3
.0

0
4

0
0
9
.0

0
9
.0

0
9
.0

0
9

0
1
0
.0

0
0
.0

0
1
.0

2
0

0
1
0
.0

2
0
.0

3
0
.0

4
0

1
1
1
.1

1
1
.1

1
1
.1

1
1

1
2
3
.1

2
3
.1

2
3
.1

2
3

1
3
5
.0

0
8
.0

6
0
.1

8
2

1
3
5
.0

1
3
.2

1
6
.1

9
1

1
5
2
.1

6
9
.2

1
5
.1

0
4

1
7
2
.0

1
6
.1

1
2
.0

5
0

1
9
6
.0

3
7
.0

7
5
.1

5
8

1
9
9
.1

7
4
.1

9
4
.0

1
6

1
9
9
.2

2
7
.0

9
9
.1

2
5

2
0
0
.0

2
7
.1

2
1
.1

1
8

2
0
2
.0

4
9
.2

4
4
.0

1
0

2
0
2
.0

7
2
.0

0
1
.0

7
7

2
0
2
.0

7
7
.1

6
2
.2

1
3

2
0
2
.2

4
7
.2

2
4
.0

8
9

2
0
5
.1

6
0
.2

0
8
.1

9
0

2
0
5
.1

8
0
.1

1
2
.0

3
6

2
0
6
.0

4
8
.0

4
4
.0

1
8

2
0
6
.1

8
6
.0

8
0
.1

1
1

2
0
6
.2

2
9
.2

2
1
.0

8
2

2
0
7
.0

7
5
.2

3
9
.1

1
5

2
0
7
.1

0
3
.0

8
0
.1

0
4

2
0
7
.1

3
6
.0

8
6
.2

2
3

2
0
7
.2

3
0
.0

5
4
.2

0
3

2
0
8
.2

5
4
.2

5
1
.1

3
2

2
0
9
.0

1
2
.0

1
3
.1

4
4

2
0
9
.0

1
2
.0

1
3
.1

4
4

2
0
9
.0

1
7
.1

8
9
.0

9
8

2
0
9
.0

3
0
.0

7
1
.1

6
5

2
0
9
.0

7
4
.0

6
0
.1

6
8

2
0
9
.1

5
4
.0

9
8
.1

0
4

2
2
2
.2

2
2
.2

2
2
.2

2
2

2
3
0
.0

0
1
.0

1
0
.0

2
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Source_IP

N
u

m
b

e
r

o
f

M
e
m

o
ry

 C
e
ll
s

NO. OF MEM. CELLS

Figure 5. Figure 5. Figure 5. Figure 5. Number of memory cells corresponding to
Source_IP

As Figures 5 and 6 illustrate, the number of Distinct

Destination IP is less than the number of Distinct Source

IP. This means that the Destination IP remains more or

less constant over a number of Source IP.

NO. OF MEMORY CELLS CORRESPONDING TO DESTINATION_IP

0

5

10

15

20

25

30

35

1
3
5

.0
1
3

.2
1

6
.1

9
1

1
5
2

.1
6
9

.2
1

5
.1

0
4

1
5
3

.1
0
7

.2
5

2
.0

6
1

1
7
2

.0
1
6

.1
1

2
.0

5
0

1
7
2

.0
1
6

.1
1

2
.1

4
9

1
7
2

.0
1
6

.1
1

3
.0

5
0

1
7
2

.0
1
6

.1
1

4
.0

5
0

1
9
9

.2
2
7

.0
9

9
.1

2
5

2
0
2

.0
7
2

.0
0

1
.0

7
7

2
0
6

.0
4
8

.0
4

4
.0

1
8

2
0
6

.1
8
6

.0
8

0
.1

1
1

2
0
6

.2
2
9

.2
2

1
.0

8
2

2
0
7

.2
3
0

.0
5

4
.2

0
3

2
0
8

.2
3
9

.0
0

3
.2

5
5

2
0
9

.1
5
4

.0
9

8
.1

0
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Destination_IP

N
u

m
b

e
r

o
f

M
e

m
o

ry
 C

e
ll
s

NO. OF MEM. CELLS

Figure 6. Figure 6. Figure 6. Figure 6. Number of memory cells corresponding to
Destination_IP

Number of distinct memory cells. From experimental

results, we observe that the DISTINCT memory cell that

has the maximum number of hits is most of the times the

one with fitness value equal to the MEAN fitness value.

The MEAN fitness value is calculated by taking half the

sum of the minimum fitness value and the maximum

fitness value of the memory cells of the set. This can be

observed from Figure 7, which shows that the detector

with fitness value 22 is the one with the maximum

number of hits.

NUMBER OF DISTINCT MEMORY CELLS

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Memory Cells

F
it

n
e

s
s

 o
f

M
e

m
o

ry
 C

e
ll

s

MC Fitness

No. of MCs

Figure 7. Figure 7. Figure 7. Figure 7. Number of distinct memory cells

The experimental results report the achievement of a

superior anomaly detection rate, which was possible by

the unique procedure involving GA and AIS. The trained

detectors could detect all the anomalies during the

Primary Immune Response and the winner detectors

could classify all the previously seen requests as

anomalies during the Secondary Immune Response

because of the GA facilitating the working of the AIS.

4. Conclusions

This paper illustrated the use of memory cells for

developing a Secondary Immune Response in an Intrusion

Detection System. Our work differs from other Intrusion

Detection Systems in that it has encapsulated Secondary

Immune Response by incorporating the use of memory

cells that enable faster detection of an already

encountered anomaly. Moreover, it is observed that the

nature of memory cells is highly random and is dependent

on the evolution of the detectors using genetic operators.

This is possible because of the evolving nature of Genetic

algorithms and the adaptability induced by Artificial

Immune System. This random nature of memory cells

makes the system less predictive and enhances the

detection capability of the system to trap similar

anomalies.

In our paper, we have provided a local solution for the

problem of holes. In the future, we intend to provide a

global solution for the same. Although our detector set

was trained against a sufficiently diverse set of samples, it

is possible to encounter a non-self pattern that cannot be

detected by the existing detector set. Ultimately, this

problem of holes can be handled if we have an expression

code for anomalies. Thus, our future work will focus on

development of such Gene Expressions, which will tackle

the problem of holes globally.

References

[1] Steven Andrew Hofmeyr, “An Immunological Model

of Distributed Detection and its Application to

Computer Security” University of New Mexico. May

1999.

[2] Ajith Abraham, Crina Grosan, Carlos Martin-Vide,

“Evolutionary Design of Intrusion Detection

Programs”, International Journal of Network

Security, Vol.4, No.3, PP.328–339, Mar. 2007.

[3] Wei Li, “Using Genetic Algorithms for Network

Intrusion Detection”, Proceedings of the United

States Department of Energy Cyber Security Group

2004 Training Conference, Kansas City, Kansas,

May 24-27, 2004, CD ROM Proceedings, 8 pages

[4] J. Balthrop, F. Esponda, S. Forrest, M. Glickman,

“Coverage and Generalization in an Artificial

Immune System”, Proceedings of the Genetic and

Evolutionary Computation Conference, Pages: 3 –

10, 2002.

[5] S. Hofmeyr, S. Forrest, “Immunity by Design: An

Artificial Immune System”, In: Proceedings of the

Genetic and Evolutionary Computation Conference,

vol. 2, pp. 1289-1296.

[6] S. A. Hofmeyr and S. Forrest, “Architecture for an

artificial immune system,” Evolutionary

Computation, vol. 7(1), pp. 45–68, 2000.

[7] A. Somayaji, S. A. Hofmeyr, and S. Forrest.

“Principles of a computer immune system”, In

Proceedings of the Second New Security Paradigms

Workshop, 1997.

[8] R. A. Goldsby, T. J. Kindt, B. A. Osborne, and W.

H., Freeman. Kubi “Immunology”, W. H. Freeman

and Co., 5th ed edition, 2002.

[9] Tizard, I. R., “Immunology: Introduction”, 4th Ed,

Saunders College Publishing, 1995.

[10] Jungwon Kim and Peter Bentley, “The Human

Immune System and Network Intrusion Detection”,

7th European Congress on Intelligent Techniques

and Soft Computing (EUFIT '99), Aachen,

Germany, September 13- 19.

[11] Paul, W. E., 1993, “The Immune System: An

Introduction”, in Fundamental Immunology 3rd Ed.,

W. E. Paul (Ed), Raven Press Ltd.

[12] J. Balthrop, F. Esponda, S. Forrest, M. Glickman,

“Coverage and Generalization in an Artificial

Immune System”, Proceedings of Genetic and

Evolutionary Computation Conference (GECCO)

2002.

[13] DARPA/MIT Lincoln Laboratory off-line intrusion

detection evaluation data set:

http://www.ll.mit.edu/IST/ideval/ (accessed on April

10, 2008)

[14] Sandhya Peddabachigari, Ajith Abraham, Crina

Grosan and Johnson Thomas, Modeling Intrusion

Detection System Using Hybrid Intelligent Systems,

Journal of Network and Computer Applications,

Elsevier Science, Volume 30, Issue 1, pp. 114-132,

2007.

[15] Yuehui Chen and Ajith Abraham and Ju Yang,

Feature Deduction and Intrusion Detection Using

Flexible Neural Trees, Second IEEE International

Symposium on Neural Networks (ISNN

2005), Lecture Notes in Computer Science Vol.

3498, J. Wang, X. Liao and Zhang Yi (Eds.)

Springer Verlag, Germany, pp. 439- 446, 2005.

