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Abstract. 

Since the appearance in 1993, first approaching the 

Shannon limit, the Turbo Codes gave a new direction 

for the channel encoding field, especially since they 

were adopted for multiple norms of 

telecommunications, such as deeper communication. 

To obtain an excellent performance, it is necessary to 
design robust turbo code interleaver. In this 

research, we investigated genetic algorithms as a 

promising optimization method to find good 

performing interleavers for large frame sizes. In this 

paper, we present our work, compare with several 

previous approaches and present experimental 

results. 

1. Introduction 

It is known that the encoding block on the 

transmission scheme is one of the complex 
operations. Channel encoding adds redundancy 

symbols to the message to be transmitted causing 

diminution to spectral efficacy of the transmission. 

The Turbo Codes (TC) was a new tendency in the 

channel encoding field and they have become a 

reference soon after their introduction. Their original 

name comes from their first structure introduced and 

described in [1], namely concatenated convolutive 

recursive systematic codes with iterative decoding. 

Turbo codes offer the best compromise between 

structure (concatenation) and randomness created by 

the interleaver. Its characteristic iterative decoding 
process is among the principal performance factors of 

the turbo codes. The significant characteristics of 

turbo codes are small bit error rate (BER) achieved 

even at low signal to noise ratio (Eb/N0) and the 

error floor at moderate and high values of Eb/N0. 

Previous studies proved that the random interleaver 

can be in certain cases more efficient than other 

channel encoding schemes [2].  

In this paper, performance of genetically evolved 

interleaver is compared to random interleaver by the 

means of BER to evaluate its efficiency. The increase 

of the interleaver size gives better performance and 

better interleaving gain while worsening latency. The 

relation (1) illustrates the influence on the latency 
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where Rb is the code bit rate, Kf stands for the frame 

size and Ni is the number of the decoding stages. The 

performance of the turbo codes depends on two 

principal parameters, first is the code spectrum, and 

the second is decorrelation between the external 

information at the same number of iterations. 

The optimization can be used for the amelioration 

of performance and the diminution of the matrix 

stature with safe performance. This second point is 

very interesting for multimedia real-time 
transmission systems over satellite because the 

interleaving matrix makes a considerable diminution 

of the codec complexity and delay. Interleaver matrix 

sizes vary from tens to ten-thousands of bits. It is 

highly inefficient to test all the possible input vectors 

(2N) with all the possible interleaver matrices (N!), 

requiring 2N.N! tests. Therefore, advanced interleaver 

optimization methods are required.  

Genetic algorithms proved to be successful tool to 

solve complex multimodal optimization problems 

involving search of large fitness spaces. Among 
others, genetic algorithms were applied in data 

mining, information retrieval, neural network 

technology, graph problems, planning and scheduling 

tasks and machine learning problems. Moreover, 

there were attempts to utilize genetic algorithms in 

interleaver optimization field before. The structure of 

straightforwardly encoded turbo code interleavers (as 

we will discuss in detail later) puts great obstacles to 

the work of genetic algorithm. Interestingly, the 

authors of previous genetic approaches to interleaver 

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155



optimization shortened or traversed the algorithm. 

We aim to introduce improved interleaver 

representation that allows following the genetic 

algorithm more literally and thus exploits its whole 

power. 

Some previous genetic results were published in 
[5] but only for small value of N (N=50), achieving a 

performance gain of 0.1 dB. Recent researches [6] 

focused on larger frame sizes and it means also larger 

interleaver length N, which is more promising for real 

time communication over satellite. The choice of the 

objective function was based on the maximizing of 

the determinist performance parameter which is free 

distance. Such optimization is complicated due the 

fact that free distance calculation is non-trivial and 

complex task.  

In the following sub-section a short overview of a 

turbo code system is presented. Section 2 introduces 
some fundamental principles of evolutionary 

algorithms and detailed design method for interleaver 

optimization is given in Section 3. Experiment results 

and discussions are presented in Sections 4 and 5 

followed by conclusions towards the end. 

1.1. Turbo code system  

Figure 1(a) represents convolutive encoder used in 

the past experiences, with the dimension of the 

memory effect υ = 4, constraint length L = (υ + 1) = 

5 and  

rate 
2
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punctured for rate of 1/3 to get better maximal free 

distance.  

The turbo encoder presented in Figure 1(b), is the 

same as first turbo encoder used in [7]. It is 

composed of parallel concatenation of two 
convolutive systematic recursive codes connected 

with an interleaver in between. The rate of such 

encoder is 1/3. 

The first encoder operates directly on the input 

sequence, denoted by c, of length N. The first 

component encoder has two outputs. The first output, 

denoted by v0, is equal to the input sequence since the 

encoder is systematic. The other output is the parity 

check sequence, denoted by v1. The interleaved 

information sequence at the input of the second 

encoder is denoted by c’.  

 
Only the parity check sequence of the second 
encoder, denoted by v2, is transmitted. The 

information sequence v0 and the parity check 

sequences of the two encoder’s v1 and v2, are 

multiplexed to generate the turbo code sequence. The 

overall code rate is thus 1/3. 

In this article will be used the Enhanced 

Maximum Aposteriori Probability Log Map soft 

decoding algorithm, a technique often used for the 

satellite communication decoding. More details can 

be found in [8]. 

2. Evolutionary Algorithms 

Evolutionary algorithms (EA) are family of iterative 

stochastic search and optimization methods based on 

mimicking successful optimization strategies 

observed in nature [9, 10, 11, 12]. The essence of 

EAs lies in the emulation of Darwinian evolution 

utilizing the concepts of Mendelian inheritance for 

the use in computer science and applications [12]. 

Together with fuzzy sets, neural networks and 

fractals, evolutionary algorithms are among the 

fundamental members of the class of soft computing 

methods. 

 

 

 
(a) 

 
 

 (b) 

 

Fig. 1. Convolutive encoder (a) and turbo encoder (b)  
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Fig. 2. Flow chart of an evolutionary algorithm 

 

A population of candidate solutions (for the 

optimization task to be solved) is initialized. New 

solutions are created by applying reproduction 

operators (mutation and/or crossover). The fitness 

(how good the solutions are) of the resulting 

solutions are evaluated and suitable selection strategy 

is then applied to determine which solutions will be 

maintained into the next generation. The procedure is 

then iterated and is illustrated in Figure 2. A primary 

advantage of evolutionary computation is that it is 
conceptually simple. 

The procedure may be written as the difference 

equation: 

x[t+1] = s(v(x[t])) (2) 

where x[t] is the population at time t under a 
representation x, v is a random variation operator, and 

s is the selection operator.  

2.1. Evolutionary Search Process 

Successful implementation of EA requires proper 

encoding, representation of the solutions of a given 

problem as encoded chromosomes etc. Finding 

proper encoding is a non-trivial problem dependent 

task affecting the performance and results of the 

evolutionary search while solving given problem. 

The solutions might be encoded into binary strings, 

real vectors or more complex, often tree-like, 

hierarchical structures, depending on the needs of 

particular application area. 
The iterative phase of evolutionary search process 

starts with an initial population of individuals that 

can be generated randomly or seeded with potentially 

good solutions. Artificial evolution consists of 

iterative application of genetic operators, introducing 

to the algorithm evolutionary principles such as 

inheritance, survival of the fittest and random 

perturbations. Current population of problem 

solutions is modified with the aim to form new and 

hopefully better population to be used in next 

generation. Iterative evolution of problem solutions 
ends after satisfying specified termination criteria and 

especially the criterion of finding optimal solution. 

After terminating the search process, the winner 

(having the maximum fitness value) is decoded and 

presented as the most optimal solution found. 

2.2. Genetic Operators 

Genetic operators and termination criteria are the 

most influential parameters for the performance of 

the evolutionary algorithm. All bellow presented 

operators have several variants of implementations 

which performs differently in various application 
areas. 

Selection operator is used for selecting 

chromosomes from population. Through this 

operator, selection pressure is applied on the 

population of solutions with the aim to pick more 

promising solutions to form following generation. 

Selected chromosomes are usually called parents. 

Crossover operator modifies the selected 

chromosomes from one population to the next by 

exchanging one or more of their subparts. Crossover 

is used for emulating sexual reproduction of diploid 
organisms with the aim to inherit and increase the 

good properties of parents for offspring 

chromosomes. 

Mutation operator introduces random perturbation 

in chromosome structure; it is used for changing 

chromosomes randomly and introducing new genetic 

material into the population. 

Besides genetic operators, a termination criterion 

is an important factor affecting the search process. 

Widely used termination criteria are i.e.: 

 Reaching optimal solution (which is often hard to 
recognize) 

 Processing certain number of generations 

 Processing certain number of generations without 

improvement in population 

Evolutionary algorithms are ubiquitous nowadays, 

having been successfully applied to numerous 

problems from different domains, including 

optimization, automatic programming, machine 

learning, operations research, bioinformatics, and 

social systems. In many cases the mathematical 

function, which describes the problem is not known 

and the values at certain parameters are obtained 
from simulations. In contrast to many other 

optimization techniques an important advantage of 

evolutionary algorithms is they can cope with multi-

modal functions. 

The family of evolutionary algorithms consists of 

genetic algorithms, genetic programming, 

evolutionary strategies and evolutionary 

programming.  

2.3. Genetic algorithms 

Genetic Algorithms (GA) introduced by Holland and 

extended by Goldberg are widely applied and a 

highly successful EA variant. Basic workflow of 
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originally proposed standard generational GA is 

depicted below: 

 

 
Many variants of standard generational GA have 

been proposed. They differ  mostly in using a 

particular selection / reproduction operators and 

replacement strategies [10]. 

3. Designing genetic algorithms for 

interleaver optimization 

Genetic algorithms have been already used for 

interleaver matrix optimization. Durand et al. [6] 

used customized GA to optimize the interleaver of 

size 105, and compared the results to previous 
interleaver design techniques. Their genetic 

algorithm heavily relied on mutation and the 

crossover operators. The fitness criterion for every 

interleaver was maximum free distance. 

Rekh et al. [5] presented another variant of GA for 

the interleaver optimization, introducing 2-point 

crossover to interleaver evolution process. 

Nevertheless, the crossover impact was limited by 

necessary correction of errors created during the 

crossover application. The fitness criterion was BER 

and the size of optimized interleaver was 50. 

In the following section, we present our 
framework using GA for interleaver optimization in 

comparison to previously reported approaches. 

3.1. Interleaver GA discussion 

An interleaver of dimension N performs a 

permutation of N input bits and therefore can be seen 

as a general permutation of N symbols. Hence, we 

encode interleaver for the purpose of genetic 

algorithm as permutation σN. An interleaver of the 

dimension N performs a permutation of N input bits 

and therefore can be seen as a general permutation of 

N symbols σN = (i1, i2, … , iN), where ik  [1, N] and 

im ≠ in for all m ≠ n  [1, N]. The application of σN on 
input vector IN for N = 5 is shown in relation (3). 

I5 = (0, 1, 0, 1, 1, 1) 

σ5 = (5, 3, 4, 1, 2) 

O5 = σ5(I5) = (1, 0, 1, 0, 1) 

(3) 

The same encoding was used also in [5]. Durand et 

al. in [6] did not specify their interleaver encoding, 

although we can conclude that they used similar 

interleaver representation. 

We have used two types of selection: roulette 

wheel selection and for speeding up the convergence 

of the algorithm a semi-elitary hybrid selection 

scheme choosing one parent by elitary manners and 
the second by proportional manners of roulette wheel 

selection. Mutation is simply realized by swapping 

positions of two coordinates in σN. On the contrary, 

traditional crossover operators (except of uniform 

crossover) will corrupt the structure of permutation 

σN and hence cannot be used without some post 

processing used for chromosome fixing. Authors of 

[6] have fully omitted crossover and the crossover 

application in [5] lead to the need to repair every new 

chromosome created via crossover. This is a 

remarkable fact since crossover is referred as the 

primary operator for GA [11].  

 
To enable the application of crossover for 

interleaver optimization, expecting performance 

increase, we have investigated the effect of uniform 

crossover on convergence ability of the classical 

interleaver optimizing GA. In the second phase, we 

have designed modified GA allowing the use of 

virtually any crossover operator for permutation 
evolution without corrupting the chromosomes. New 

crossover friendly GA is based on separation of 

 

 
 

Fig. 3. Traditional population compared with 

HLC’s 

I. Define objective function 

II. Encode initial population of possible solutions as 

fixed length binary strings and evaluate chromosomes 

in initial population using objective function 

III.  Create new population (evolutionary search for better 

solutions): 

a.  Select suitable chromosomes for reproduction 

(parents) 

b. Apply crossover operator on parents with respect 

to crossover probability to produce new 

chromosomes (offspring) 

c. Apply mutation operator on offspring 

chromosomes with respect to mutation 

probability. Add newly constituted chromosomes 

to new population 

d. Until the size of new population is smaller than 

size of current population go back to a. 

e. Replace current population by new population 

IV. Evaluate current population using objective function 

V. Check termination criteria; if not satisfied go back to 

III. 
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chromosomes into groups of the same size called 

higher level chromosomes, (HLC’s). Genetic 

operators are then applied on HLC’s while original 

chromosomes act as genes as shown in Figure 3. We 

have tested the above introduced techniques on a 

benchmarking problem consisting of a search for an 
identity matrix. The results have revealed that GAs 

with semi-elitary selection and HLC were most 

efficient. 

The best performing GA was used for interleaver 

optimization. As fitness criterion was adopted 

approach introduced in [5]: average BER, captured 

after simulated transmission of several low weight 

information frames. 

 

4. Experiments 

An experimental framework built upon the IT++ 
library1 was used to experimentally evaluate 

proposed interleaver generation method. We have 

experimented with 64, 128, 512 and 1024 bit 

interleavers aiming to optimize in the future as large 

interleaver as possible. 

The settings for all optimization experiments were 

as follows: 

 GA with HLC and semi-elitary selection 

 1000 generations 

 probability of crossover = 0.8 

 population of 5 high level chromosomes per 6 
genes 

 fitness criterion was minimal BER after simulated 

submission of 100 random frames of weight up to 

6 

 the simulations were performed over additive 

white Gaussian noise (AWGN) channel 

The AWGN channel is a good model for satellite and 

deep space communication links but not an 

appropriate model for terrestrial links. The evolved 

interleavers were evaluated by simulated 

transmission over AWGN channel for Eb/N0  [0, 4] 

and flat Rayleigh fading channel for Eb/N0  [0, 6]. 
Rayleigh fading channel was used as a reasonable 

model for tropospheric and ionospheric signal 
propagation as well as the effect of heavily built-up 

urban environments on radio signals [13]. 

In the experiments, GA with classic population 

and semi-elitary selection were used. Optimized 

interleavers were compared to random interleaver 

taken as reference by the means of Eb/N0 to BER 

ratio, captured after simulated transmission of 500 

random frames. 

4.1. Optimization results 

Optimization results are summarized in Figures 4 and 

5. To be consistent, the following notation were also 

                                                
1 IT++ is available at http://itpp.sourceforge.net/  

used: curve denoted as O1 corresponds to the best 

interleaver found by GA with classic population, O2 

describes performance of best interleaver found using 

GA with HLCs and Rand denotes reference random 

interleaver. AWGN denoted curves illustrate 

experiments over additive white Gaussian noise 
channel and Rayleigh curves represent the 

experimental results measured over Rayleigh 

channel. In all figures can be seen that optimized 

interleavers perform better than reference random 

interleaver. 

 
 

5. Result discussion 

Figure 4 illustrates the binary error rate for an 

interleaver with the length of 64 bits. It is observed 
that an improvement for AWGN channel begin to 

appear from Eb/N0 = 2dB and becomes more 

significant for larger Eb/N0 values, especially for the 

interleaver obtained by second optimization method. 

Both optimized interleavers overperformed the 

random interleaver. For BER=10-3 we have an Eb/N0 

of approximately 3.25 dB for the random interelaver 

and 2.75 dB for the second optimized interleaver 

achieving  gain of  0.5 dB. The trend is valid for 

Rayleigh channel experiments as well and the 

supremacy of interleaver O2 is even more evident.  

For 128 bits interleaver length, as observed in 
Figure 5, under AWGN, the amelioration begins to be 

significant between the second optimization and the 

random interleaver from Eb/N0=2.25 dB (it means 

for a larger signal noise rate values). For BER=10-3, 

we have Eb/N0 = 2.25 dB for the second 

optimization and 2.5 dB for the random interelaver 

having 0.25 dB of gain. For the Rayleigh channel 

transmissions, the better performance of O1 and O2 

when compared to random interleaver becomes very 

clear for greater EbN0 values (>5 dB) and O2 is 

again giving the best performance among the three.  

 

  
Fig. 4. 64bit interleaver 

Optimization of 64 bit interleaver
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The gain becomes more considerable for interleaver 

length of 512bits as shown in Figure 6. For example 

in AWGN, we have for BER=10-4 the Eb/N0=2.75 dB 
for the second optimization method while having 3.5 

dB for the random interelaver. This indicates 0.75 dB 

gain for 512bits length interleaver, which is a 

remarkable result for this interleaver length. In 

Rayleigh channel, the initial BER values for all the 

three compared interleavers are almost the same 

while higher for EbN0. Interleaver O2 achieved 

permanent gain over similarly performing O1 and 

random interleaver. 

Similarly, optimized 1024 bit inteleavers, 

highlighting specially interleaver O2, as illustrated in 

Figure 7, clearly outperforms reference random 
interleaver for both, AWGN and Rayleigh channels.  

 

6.  Conclusions  

In this paper, we discussed the problem of efficient 

turbo code interleaver optimization by the means of 

genetic algorithms. Previous approaches were revised 

and novel modifications to existing interleaver 

optimizing GA improving their convergence were 

introduced. Presented GA modifications are general 

and can be used in other application areas as well. 

Optimized interleavers found by introduced method 

were verified and compared to random interleaver by 

the means of BER performance. The verification 
utilized both, AWGN channel and more real-life-like 

Rayleigh fading channel. The optimized interleavers 

outperformed random interleavers having the 

interleaver found by presented method total winner 

by the means of BER to EbN0 ratio in most cases. 

 
In the future, we aim to use developed algorithm 

for the optimization of larger interleavers and 

investigate the use of minimum free distance as more 

competent fitness criterion. Additionally, we want to 

employ Rayleigh fading channel model at the 

optimization phase and compare obtained interleavers 

to interleavers evolved over AWGN channel. 

Moreover, we are investigating the general process of 

permutation evolution since it has numerous 

applications in computer science (i.e. in data 
compression). 
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Fig. 7. 1024bit interleaver 

Optimization of 1024 bit interleaver
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Fig. 6. 512bit  interleaver 

Optimization of 512 bit interleaver
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Fig. 5. 128bit interleaver 

Optimization of 128 bit interleaver
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