
Evolving Turbo Code Interleavers by Genetic Algorithms

Ajith Abraham

IITA Professorship Program,

School of Computer Science and

Engineering,

Yonsei University1

134 Shinchon-dong, Sudaemoon-ku,
Seoul 120-749, Republic of Korea

ajith.abraham@ieee.org

Pavel Krömer, Václav Snášel
Dept. of Computer Science,

Faculty of Electrical Engineering

and Computer Science

VŠB – Technical University of

Ostrava
17. listopadu 15, 708 33 Ostrava–

Poruba, Czech Republic

{pavel.kromer.fei,

vaclav.snasel}@vsb.cz

Nabil Ouddane
Dept. of Telecommunications,

Faculty of Electrical Engineering

and Computer Science,

 VŠB – Technical University of

Ostrava,
17. listopadu 15, 708 33 Ostrava –

Poruba, Czech Republic

nabil.ouddane.st1@vsb.cz

Abstract.

Since the appearance in 1993, first approaching the

Shannon limit, the Turbo Codes gave a new direction

for the channel encoding field, especially since they

were adopted for multiple norms of

telecommunications, such as deeper communication.

To obtain an excellent performance, it is necessary to
design robust turbo code interleaver. In this

research, we investigated genetic algorithms as a

promising optimization method to find good

performing interleavers for large frame sizes. In this

paper, we present our work, compare with several

previous approaches and present experimental

results.

1. Introduction

It is known that the encoding block on the

transmission scheme is one of the complex
operations. Channel encoding adds redundancy

symbols to the message to be transmitted causing

diminution to spectral efficacy of the transmission.

The Turbo Codes (TC) was a new tendency in the

channel encoding field and they have become a

reference soon after their introduction. Their original

name comes from their first structure introduced and

described in [1], namely concatenated convolutive

recursive systematic codes with iterative decoding.

Turbo codes offer the best compromise between

structure (concatenation) and randomness created by

the interleaver. Its characteristic iterative decoding
process is among the principal performance factors of

the turbo codes. The significant characteristics of

turbo codes are small bit error rate (BER) achieved

even at low signal to noise ratio (Eb/N0) and the

error floor at moderate and high values of Eb/N0.

Previous studies proved that the random interleaver

can be in certain cases more efficient than other

channel encoding schemes [2].

In this paper, performance of genetically evolved

interleaver is compared to random interleaver by the

means of BER to evaluate its efficiency. The increase

of the interleaver size gives better performance and

better interleaving gain while worsening latency. The

relation (1) illustrates the influence on the latency

i

b

f

d N
R

K
t (1)

where Rb is the code bit rate, Kf stands for the frame

size and Ni is the number of the decoding stages. The

performance of the turbo codes depends on two

principal parameters, first is the code spectrum, and

the second is decorrelation between the external

information at the same number of iterations.

The optimization can be used for the amelioration

of performance and the diminution of the matrix

stature with safe performance. This second point is

very interesting for multimedia real-time
transmission systems over satellite because the

interleaving matrix makes a considerable diminution

of the codec complexity and delay. Interleaver matrix

sizes vary from tens to ten-thousands of bits. It is

highly inefficient to test all the possible input vectors

(2N) with all the possible interleaver matrices (N!),

requiring 2N.N! tests. Therefore, advanced interleaver

optimization methods are required.

Genetic algorithms proved to be successful tool to

solve complex multimodal optimization problems

involving search of large fitness spaces. Among
others, genetic algorithms were applied in data

mining, information retrieval, neural network

technology, graph problems, planning and scheduling

tasks and machine learning problems. Moreover,

there were attempts to utilize genetic algorithms in

interleaver optimization field before. The structure of

straightforwardly encoded turbo code interleavers (as

we will discuss in detail later) puts great obstacles to

the work of genetic algorithm. Interestingly, the

authors of previous genetic approaches to interleaver

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.120

155

optimization shortened or traversed the algorithm.

We aim to introduce improved interleaver

representation that allows following the genetic

algorithm more literally and thus exploits its whole

power.

Some previous genetic results were published in
[5] but only for small value of N (N=50), achieving a

performance gain of 0.1 dB. Recent researches [6]

focused on larger frame sizes and it means also larger

interleaver length N, which is more promising for real

time communication over satellite. The choice of the

objective function was based on the maximizing of

the determinist performance parameter which is free

distance. Such optimization is complicated due the

fact that free distance calculation is non-trivial and

complex task.

In the following sub-section a short overview of a

turbo code system is presented. Section 2 introduces
some fundamental principles of evolutionary

algorithms and detailed design method for interleaver

optimization is given in Section 3. Experiment results

and discussions are presented in Sections 4 and 5

followed by conclusions towards the end.

1.1. Turbo code system

Figure 1(a) represents convolutive encoder used in

the past experiences, with the dimension of the

memory effect υ = 4, constraint length L = (υ + 1) =

5 and

rate
2

1

olsOutputSymb

lsInputSymbo

n

k
r . The encoder is

punctured for rate of 1/3 to get better maximal free

distance.

The turbo encoder presented in Figure 1(b), is the

same as first turbo encoder used in [7]. It is

composed of parallel concatenation of two
convolutive systematic recursive codes connected

with an interleaver in between. The rate of such

encoder is 1/3.

The first encoder operates directly on the input

sequence, denoted by c, of length N. The first

component encoder has two outputs. The first output,

denoted by v0, is equal to the input sequence since the

encoder is systematic. The other output is the parity

check sequence, denoted by v1. The interleaved

information sequence at the input of the second

encoder is denoted by c’.

Only the parity check sequence of the second
encoder, denoted by v2, is transmitted. The

information sequence v0 and the parity check

sequences of the two encoder’s v1 and v2, are

multiplexed to generate the turbo code sequence. The

overall code rate is thus 1/3.

In this article will be used the Enhanced

Maximum Aposteriori Probability Log Map soft

decoding algorithm, a technique often used for the

satellite communication decoding. More details can

be found in [8].

2. Evolutionary Algorithms

Evolutionary algorithms (EA) are family of iterative

stochastic search and optimization methods based on

mimicking successful optimization strategies

observed in nature [9, 10, 11, 12]. The essence of

EAs lies in the emulation of Darwinian evolution

utilizing the concepts of Mendelian inheritance for

the use in computer science and applications [12].

Together with fuzzy sets, neural networks and

fractals, evolutionary algorithms are among the

fundamental members of the class of soft computing

methods.

(a)

 (b)

Fig. 1. Convolutive encoder (a) and turbo encoder (b)

156156156

Fig. 2. Flow chart of an evolutionary algorithm

A population of candidate solutions (for the

optimization task to be solved) is initialized. New

solutions are created by applying reproduction

operators (mutation and/or crossover). The fitness

(how good the solutions are) of the resulting

solutions are evaluated and suitable selection strategy

is then applied to determine which solutions will be

maintained into the next generation. The procedure is

then iterated and is illustrated in Figure 2. A primary

advantage of evolutionary computation is that it is
conceptually simple.

The procedure may be written as the difference

equation:

x[t+1] = s(v(x[t])) (2)

where x[t] is the population at time t under a
representation x, v is a random variation operator, and

s is the selection operator.

2.1. Evolutionary Search Process

Successful implementation of EA requires proper

encoding, representation of the solutions of a given

problem as encoded chromosomes etc. Finding

proper encoding is a non-trivial problem dependent

task affecting the performance and results of the

evolutionary search while solving given problem.

The solutions might be encoded into binary strings,

real vectors or more complex, often tree-like,

hierarchical structures, depending on the needs of

particular application area.
The iterative phase of evolutionary search process

starts with an initial population of individuals that

can be generated randomly or seeded with potentially

good solutions. Artificial evolution consists of

iterative application of genetic operators, introducing

to the algorithm evolutionary principles such as

inheritance, survival of the fittest and random

perturbations. Current population of problem

solutions is modified with the aim to form new and

hopefully better population to be used in next

generation. Iterative evolution of problem solutions
ends after satisfying specified termination criteria and

especially the criterion of finding optimal solution.

After terminating the search process, the winner

(having the maximum fitness value) is decoded and

presented as the most optimal solution found.

2.2. Genetic Operators

Genetic operators and termination criteria are the

most influential parameters for the performance of

the evolutionary algorithm. All bellow presented

operators have several variants of implementations

which performs differently in various application
areas.

Selection operator is used for selecting

chromosomes from population. Through this

operator, selection pressure is applied on the

population of solutions with the aim to pick more

promising solutions to form following generation.

Selected chromosomes are usually called parents.

Crossover operator modifies the selected

chromosomes from one population to the next by

exchanging one or more of their subparts. Crossover

is used for emulating sexual reproduction of diploid
organisms with the aim to inherit and increase the

good properties of parents for offspring

chromosomes.

Mutation operator introduces random perturbation

in chromosome structure; it is used for changing

chromosomes randomly and introducing new genetic

material into the population.

Besides genetic operators, a termination criterion

is an important factor affecting the search process.

Widely used termination criteria are i.e.:

 Reaching optimal solution (which is often hard to
recognize)

 Processing certain number of generations

 Processing certain number of generations without

improvement in population

Evolutionary algorithms are ubiquitous nowadays,

having been successfully applied to numerous

problems from different domains, including

optimization, automatic programming, machine

learning, operations research, bioinformatics, and

social systems. In many cases the mathematical

function, which describes the problem is not known

and the values at certain parameters are obtained
from simulations. In contrast to many other

optimization techniques an important advantage of

evolutionary algorithms is they can cope with multi-

modal functions.

The family of evolutionary algorithms consists of

genetic algorithms, genetic programming,

evolutionary strategies and evolutionary

programming.

2.3. Genetic algorithms

Genetic Algorithms (GA) introduced by Holland and

extended by Goldberg are widely applied and a

highly successful EA variant. Basic workflow of

157157157

originally proposed standard generational GA is

depicted below:

Many variants of standard generational GA have

been proposed. They differ mostly in using a

particular selection / reproduction operators and

replacement strategies [10].

3. Designing genetic algorithms for

interleaver optimization

Genetic algorithms have been already used for

interleaver matrix optimization. Durand et al. [6]

used customized GA to optimize the interleaver of

size 105, and compared the results to previous
interleaver design techniques. Their genetic

algorithm heavily relied on mutation and the

crossover operators. The fitness criterion for every

interleaver was maximum free distance.

Rekh et al. [5] presented another variant of GA for

the interleaver optimization, introducing 2-point

crossover to interleaver evolution process.

Nevertheless, the crossover impact was limited by

necessary correction of errors created during the

crossover application. The fitness criterion was BER

and the size of optimized interleaver was 50.

In the following section, we present our
framework using GA for interleaver optimization in

comparison to previously reported approaches.

3.1. Interleaver GA discussion

An interleaver of dimension N performs a

permutation of N input bits and therefore can be seen

as a general permutation of N symbols. Hence, we

encode interleaver for the purpose of genetic

algorithm as permutation σN. An interleaver of the

dimension N performs a permutation of N input bits

and therefore can be seen as a general permutation of

N symbols σN = (i1, i2, … , iN), where ik [1, N] and

im ≠ in for all m ≠ n [1, N]. The application of σN on
input vector IN for N = 5 is shown in relation (3).

I5 = (0, 1, 0, 1, 1, 1)

σ5 = (5, 3, 4, 1, 2)

O5 = σ5(I5) = (1, 0, 1, 0, 1)

(3)

The same encoding was used also in [5]. Durand et

al. in [6] did not specify their interleaver encoding,

although we can conclude that they used similar

interleaver representation.

We have used two types of selection: roulette

wheel selection and for speeding up the convergence

of the algorithm a semi-elitary hybrid selection

scheme choosing one parent by elitary manners and
the second by proportional manners of roulette wheel

selection. Mutation is simply realized by swapping

positions of two coordinates in σN. On the contrary,

traditional crossover operators (except of uniform

crossover) will corrupt the structure of permutation

σN and hence cannot be used without some post

processing used for chromosome fixing. Authors of

[6] have fully omitted crossover and the crossover

application in [5] lead to the need to repair every new

chromosome created via crossover. This is a

remarkable fact since crossover is referred as the

primary operator for GA [11].

To enable the application of crossover for

interleaver optimization, expecting performance

increase, we have investigated the effect of uniform

crossover on convergence ability of the classical

interleaver optimizing GA. In the second phase, we

have designed modified GA allowing the use of

virtually any crossover operator for permutation
evolution without corrupting the chromosomes. New

crossover friendly GA is based on separation of

Fig. 3. Traditional population compared with

HLC’s

I. Define objective function

II. Encode initial population of possible solutions as

fixed length binary strings and evaluate chromosomes

in initial population using objective function

III. Create new population (evolutionary search for better

solutions):

a. Select suitable chromosomes for reproduction

(parents)

b. Apply crossover operator on parents with respect

to crossover probability to produce new

chromosomes (offspring)

c. Apply mutation operator on offspring

chromosomes with respect to mutation

probability. Add newly constituted chromosomes

to new population

d. Until the size of new population is smaller than

size of current population go back to a.

e. Replace current population by new population

IV. Evaluate current population using objective function

V. Check termination criteria; if not satisfied go back to

III.

158158158

chromosomes into groups of the same size called

higher level chromosomes, (HLC’s). Genetic

operators are then applied on HLC’s while original

chromosomes act as genes as shown in Figure 3. We

have tested the above introduced techniques on a

benchmarking problem consisting of a search for an
identity matrix. The results have revealed that GAs

with semi-elitary selection and HLC were most

efficient.

The best performing GA was used for interleaver

optimization. As fitness criterion was adopted

approach introduced in [5]: average BER, captured

after simulated transmission of several low weight

information frames.

4. Experiments

An experimental framework built upon the IT++
library1 was used to experimentally evaluate

proposed interleaver generation method. We have

experimented with 64, 128, 512 and 1024 bit

interleavers aiming to optimize in the future as large

interleaver as possible.

The settings for all optimization experiments were

as follows:

 GA with HLC and semi-elitary selection

 1000 generations

 probability of crossover = 0.8

 population of 5 high level chromosomes per 6
genes

 fitness criterion was minimal BER after simulated

submission of 100 random frames of weight up to

6

 the simulations were performed over additive

white Gaussian noise (AWGN) channel

The AWGN channel is a good model for satellite and

deep space communication links but not an

appropriate model for terrestrial links. The evolved

interleavers were evaluated by simulated

transmission over AWGN channel for Eb/N0 [0, 4]

and flat Rayleigh fading channel for Eb/N0 [0, 6].
Rayleigh fading channel was used as a reasonable

model for tropospheric and ionospheric signal
propagation as well as the effect of heavily built-up

urban environments on radio signals [13].

In the experiments, GA with classic population

and semi-elitary selection were used. Optimized

interleavers were compared to random interleaver

taken as reference by the means of Eb/N0 to BER

ratio, captured after simulated transmission of 500

random frames.

4.1. Optimization results

Optimization results are summarized in Figures 4 and

5. To be consistent, the following notation were also

1 IT++ is available at http://itpp.sourceforge.net/

used: curve denoted as O1 corresponds to the best

interleaver found by GA with classic population, O2

describes performance of best interleaver found using

GA with HLCs and Rand denotes reference random

interleaver. AWGN denoted curves illustrate

experiments over additive white Gaussian noise
channel and Rayleigh curves represent the

experimental results measured over Rayleigh

channel. In all figures can be seen that optimized

interleavers perform better than reference random

interleaver.

5. Result discussion

Figure 4 illustrates the binary error rate for an

interleaver with the length of 64 bits. It is observed
that an improvement for AWGN channel begin to

appear from Eb/N0 = 2dB and becomes more

significant for larger Eb/N0 values, especially for the

interleaver obtained by second optimization method.

Both optimized interleavers overperformed the

random interleaver. For BER=10-3 we have an Eb/N0

of approximately 3.25 dB for the random interelaver

and 2.75 dB for the second optimized interleaver

achieving gain of 0.5 dB. The trend is valid for

Rayleigh channel experiments as well and the

supremacy of interleaver O2 is even more evident.

For 128 bits interleaver length, as observed in
Figure 5, under AWGN, the amelioration begins to be

significant between the second optimization and the

random interleaver from Eb/N0=2.25 dB (it means

for a larger signal noise rate values). For BER=10-3,

we have Eb/N0 = 2.25 dB for the second

optimization and 2.5 dB for the random interelaver

having 0.25 dB of gain. For the Rayleigh channel

transmissions, the better performance of O1 and O2

when compared to random interleaver becomes very

clear for greater EbN0 values (>5 dB) and O2 is

again giving the best performance among the three.

Fig. 4. 64bit interleaver

Optimization of 64 bit interleaver

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0
0,
25 0,

5
0,
75 1

1,
25 1,

5
1,
75 2

2,
25 2,

5
2,
75 3

3,
25 3,

5
3,
75 4

4,
25 4,

5
4,
75 5

5,
25 5,

5
5,
75 6

Eb/N0 [dB]

B
E
R

AWGN O1
AWGN O2
AWGN Rand
Rayleigh O1
Rayleigh O2
Rayleigh Rand

159159159

The gain becomes more considerable for interleaver

length of 512bits as shown in Figure 6. For example

in AWGN, we have for BER=10-4 the Eb/N0=2.75 dB
for the second optimization method while having 3.5

dB for the random interelaver. This indicates 0.75 dB

gain for 512bits length interleaver, which is a

remarkable result for this interleaver length. In

Rayleigh channel, the initial BER values for all the

three compared interleavers are almost the same

while higher for EbN0. Interleaver O2 achieved

permanent gain over similarly performing O1 and

random interleaver.

Similarly, optimized 1024 bit inteleavers,

highlighting specially interleaver O2, as illustrated in

Figure 7, clearly outperforms reference random
interleaver for both, AWGN and Rayleigh channels.

6. Conclusions

In this paper, we discussed the problem of efficient

turbo code interleaver optimization by the means of

genetic algorithms. Previous approaches were revised

and novel modifications to existing interleaver

optimizing GA improving their convergence were

introduced. Presented GA modifications are general

and can be used in other application areas as well.

Optimized interleavers found by introduced method

were verified and compared to random interleaver by

the means of BER performance. The verification
utilized both, AWGN channel and more real-life-like

Rayleigh fading channel. The optimized interleavers

outperformed random interleavers having the

interleaver found by presented method total winner

by the means of BER to EbN0 ratio in most cases.

In the future, we aim to use developed algorithm

for the optimization of larger interleavers and

investigate the use of minimum free distance as more

competent fitness criterion. Additionally, we want to

employ Rayleigh fading channel model at the

optimization phase and compare obtained interleavers

to interleavers evolved over AWGN channel.

Moreover, we are investigating the general process of

permutation evolution since it has numerous

applications in computer science (i.e. in data
compression).

References

[1] Berrou, C., Glavieux, A. and Thitimajshima, P., Near
Shannon limit error-correcting coding and decoding: turbo
codes, Proc. Int. Conf. on Commun., pp. 1064–1070, 1993.
[2] Hokfelt, J. and Maseng, T., METHODICAL
INTERLEAVER DESIGN FOR TURBO CODES,
International Symposium on Turbo Codes.
[3] Kraft, D. H., Petry, F. E., Buckles, B. P. and
Sadasivan, T., Genetic Algorithms for Query Optimization

in Information Retrieval: Relevance Feedback, Genetic
Algorithms and Fuzzy Logic Systems, edited by Sanchez,
E., Shibata, T. and Zadeh, L., World Scientific, Singapore,
1997.
[4] Owais, S., Kromer, P., Snasel, V., Husek, D. and
Neruda, R., Implementing GP on Optimizing both Boolean
and Extended Boolean Queries in IR and Fuzzy IR systems
with Respect to the Users Profiles, Proceedings of the 2006

IEEE Congress on Evolutionary Computation, edited by

Fig. 7. 1024bit interleaver

Optimization of 1024 bit interleaver

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0
0,
25 0,

5
0,
75 1

1,
25 1,

5
1,
75 2

2,
25 2,

5
2,
75 3

3,
25 3,

5
3,
75 4

4,
25 4,

5
4,
75 5

5,
25 5,

5
5,
75 6

Eb/N0 [dB]

B
E
R

AWGN O1
AWGN O2
AWGN Rand
Rayleigh O1
Rayleigh O2
Rayleigh Rand

Fig. 6. 512bit interleaver

Optimization of 512 bit interleaver

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0
0,
25 0,

5
0,
75 1

1,
25 1,

5
1,
75 2

2,
25 2,

5
2,
75 3

3,
25 3,

5
3,
75 4

4,
25 4,

5
4,
75 5

5,
25 5,

5
5,
75 6

Eb/N0 [dB]

B
E
R

AWGN O1
AWGN O2
AWGN Rand
Rayleigh O1
Rayleigh O2
Rayleigh Rand

Fig. 5. 128bit interleaver

Optimization of 128 bit interleaver

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0
0,
25 0,

5
0,
75 1

1,
25 1,

5
1,
75 2

2,
25 2,

5
2,
75 3

3,
25 3,

5
3,
75 4

4,
25 4,

5
4,
75 5

5,
25 5,

5
5,
75 6

Eb/N0 [dB]

B
E
R

AWGN O1
AWGN O2
AWGN Rand
Rayleigh O1
Rayleigh O2
Rayleigh Rand

160160160

Yen, G. G., Wang, L., Bonissone, P. and Lucas, S. M., pp.
5648–5654, IEEE Computer Society, Vancouver, BC,
Canada, 6-21 Jul. 2006.
[5] Rekh, S., Rani, S., Hordijk, W., Gift, P. and
Shanmugam, Design of an Interleaver for Turbo Codes

using Genetic Algorithms, The International Journal of
Artificial Intelligence and Machine Learning, Vol. 6, pp. 1–
5, 2006.
[6] Durand, N., Alliot, J. and Bartolomé, B., Turbo
Codes Optimization Using Genetic Algorithms,
Proceedings of the Congress on Evolutionary Computation,
edited by Angeline, P. J., Michalewicz, Z., Schoenauer, M.,
Yao, X. and Zalzala, A., Vol. 2, pp. 816–822, IEEE Press,

Mayflower Hotel, Washington D.C., USA, 6-9 1999.
[7] Bartolome, B., Utilisation des turbo codes pour un
systeme de communications multimédia par satellite, Ph.D.
thesis, Ecole Nationale Supérieure des
TélécommunicationsFrance-Ile de France-Paris, 1999.

[8] Robertson, P., Hoher, P. and Villebrun, E., Optimal
and Sub-Optimal Maximum a Posteriori Algorithms
Suitable for Turbo Decoding, 1997.
[9] Dianati, M., Song, I. and Treiber, M., An
Introduction to Genetic Algorithms and Evolution

Strategies, Technical report, University of Waterloo,
Ontario, N2L 3G1, Canada, July 2002.
[10] Jones, G., Genetic and Evolutionary Algorithms,
Encyclopedia of Computational Chemistry, edited by von
Rague, P., John Wiley and Sons, 1998.
[11] Mitchell, M., An Introduction to Genetic Algorithms,
MIT Press, Cambridge, MA, 1996.
[12] Bodenhofer, U., Genetic Algorithms: Theory and

Applications, Lecture notes, Fuzzy Logic Laboratorium
Linz-Hagenberg, Winter 2003/2004.
[13] Proakis, J. G., Digital Communications, McGraw-
Hill, New York, 4th edn., 2001.

161161161

