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Summary. Very often real world applications have several multiple conflicting ob-
jectives. Recently there has been a growing interest in evolutionary multiobjective
optimization algorithms which combines two major disciplines: evolutionary com-
putation and the theoretical frameworks of multicriteria decision making. In this
introductory chapter, we define some fundemental concepts of multiobjective op-
timization emphasizing the motivation and advantages of using evolutionary algo-
rithms. We then layout the important contributions of the remaining chapters of
this volume.

1 What is Multiobjective Optimization?

Even though some real world problems can be reduced to a matter of single
objective very often it is hard to define all the aspects in terms of a single
objective. Defining multiple objectives often gives a better idea of the task.
Multiobjective optimization has been available for about two decades, and re-
cently its application in real world problems is continously increasing. In con-
trast to the plethora of techniques available for single-objective optimization,
relatively few techniques have been developed for multiobjective optimization.

In single objective optimization, the search space is often well defined. As
soon as there are several possibly contradicting objectives to be optimized
simultaneously, there is no longer a single optimal solution but rather a whole
set of possible solutions of equivalent quality. When we try to optimize several
objectives at the same time the search space also becomes partially ordered. To
obtain the optimal solution, there will be a set of optimal trade-offs between
the conflicting objectives. A multiobjective optimization problem is defined
by a function f which maps a set of constraint variables to a set of objective
values.

As shown in Figure 1, a solution could be best, worst and also indifferent to
other solutions (neither dominating or dominated) with respect to the objec-
tive values. Best solution means a solution not worst in any of the objectives
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and at least better in one objective than the other. An optimal solution is the
solution that is not dominated by any other solution in the search space. Such
an optimal solution is called Pareto optimal and the entire set of such optimal
trade-offs solutions is called Pareto optimal set. As evident, in a real world
situation a decision making (trade-off) process is required to obtain the opti-
mal solution. Even though there are several ways to approach a multiobjective
optimization problem, most work is concentrated on the approximation of the
Pareto set.

Figure 1. Concept of Pareto optimality

2 Why Use Evolutionary Algorithms for Multiobjective
Optimization?

A number of stochastic optimization techniques like simulated annealing; tabu
search, ant colony optimization etc. could be used to generate the Pareto set.
Just because of the working procedure of these algorithms, the solutions ob-
tained very often tend to be stuck at a good approximation and they do not
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guarantee to identify optimal trade-offs. Evolutionary algorithm is character-
ized by a population of solution candidates and the reproduction process en-
ables to combine existing solutions to generate new solutions. Finally, natural
selection determines which individuals of the current population participate
in the new population.

Figure 2. Flowchart of evolutionary algorithm iteration

The iterative computation process is illustrated in Figure 2. Multiobjective
evolutionary algorithms can yield a whole set of potential solutions, which are
all optimal in some sense. After the first pioneering work on multiobjective
evolutionary optimization in the eighties [1], several different algorithms have
been proposed and successfully applied to various problems. For comprehen-
sive overviews and discussions, the reader is referred to [2][3]. Some of the
other advantages of having evolutionary algorithms is that they require very
little knowledge about the problem being solved, easy to implement, robust
and could be implemented in a parallel environment.

3 Evolutionary Multiobjective Optimization: Challenges,
Advances and Applications

The main challenge in a multiobjective optimization environment is to mini-
mize the distance of the generated solutions to the Pareto set and to maximize
the diversity of the developed Pareto set. A good Pareto set may be obtained
by appropriate guiding of the search process through careful design of repro-
duction operators and fitness assignment strategies. To obtain diversification
special care has to be taken in the selection process. Special care is also to
be taken care to prevent non-dominated solutions from being lost [4][5]. Ad-
dressing the evolutionary multiobjective optimization problem and the various
design challenges using different intelligent approaches is the novelty of this
edited volume. This volume comprises of 12 chapters and each chapter is
complete by itself. The rest of the volume is organized as follows.

In the following Chapter Coello presents the basic concepts of multiobjec-
tive evolutionary algorithms, its potential appications, metrics, test functions
and concludes with some of the most promising future research directions.
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Laumanns begins Chapter 3 by presenting the convergence behavior of
simple evolutionary algorithms with different selection strategies on a contin-
uous multiobjective optimization problem. Special focus is given to the prob-
lem of controlling the mutation strength, since an adaptation of the mutation
strength is necessary to converge to the optimum with arbitrary precision,
and to achieve linear convergence order. Experiment results reveal that the
convergence properties achieved by a self-adaptation of the mutation strength
on single-objective problems do not carry over to the multiobjective case,
if a simple dominance-based selection scheme is used. As a solution, a com-
bined strategy is proposed using dominance-based selection in the archive and
scalarizing functions in the working population.

In Chapter 4, Mumford explains a Pareto-based approach to evolutionary
multi-objective optimization, that avoids most of the time consuming global
calculations typical of other multi-objective evolutionary techniques. The new
approach uses a simple uniform selection strategy within a steady-state evo-
lutionary algorithm

and employs a straightforward elitist mechanism for replacing popula-
tion members with their offspring. An important advantage of the proposed
method is that global calculations for fitness and Pareto dominance are not
needed. The perormance of the algorithm is demonstrated using some bench-
mark combinatorial problems and continuous functions.

Mostaghim and Teich in Chapter 5 shows the importance of special data
structures for storing and updating archives which would have a great im-
pact on the required computational time, especially when optimizing higher-
dimensional problems with large Pareto-sets. Authors introduce Quad-trees
as an alternative data structure to linear lists for storing Pareto-sets. Perfor-
mance of the quad-trees data structures are evaluated and compared using
several multi-objective example problems. The results presented show that
typically, linear lists perform better for small population sizes and higher-
dimensional Pareto-fronts (large archives) whereas Quad-trees perform better
for larger population sizes and Pareto-sets of small cardinality.

In Chapter 6, Deb et al. suggests three different approaches for systemati-
cally designing test problems for evaluating multiobjective evolutionary algo-
rithms. The simplicity of construction, scalability to any number of decision
variables and objectives, knowledge of the shape and the location of the re-
sulting Pareto-optimal front, and introduction of controlled difficulties in both
converging to the true Pareto-optimal front and maintaining a widely dis-
tributed set of solutions are the main features of the suggested test problems.
These test problems should be found useful in various research activities on
new multiobjective evolutionary algorithms and to enhance the understanding
of the working principles of multiobjective evolutionary algorithms.

Srinivasan and Seow in Chapter 7 presents an hybrid combination of par-
ticle swarm optimization and evolutionary algorithm for multiobjective op-
timization problems. The main algorithm for swarm intelligence is Particle
Swarm Optimization, which is inspired by the paradigm of birds flocking.
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The core updating mechanism of the particle swarm optimization algorithm
relies only on two simple self-updating equations and the process of updat-
ing the individuals per iteration is fast as compared to the computationally
expensive reproduction mechanism using mutation or crossover operations
in typical evolutionary algorithm. While additional domain-specific heuristics
related to the real-world problems cannot be easily incorporated in the par-
ticle swarm optimization algorithm; in an evolutionary algorithm, heuristics
can be easily incorporated in the population generator and mutation oper-
ator to prevent leading the individuals to infeasible solutions. Therefore, a
direct particle swarm optimization does not perform well in its search in com-
plex multi-constrained solution spaces, which are the case for many complex
real world problems. To overcome the limitations of particle swarm optimiza-
tion and evolutionary algorithms, a hybridized algorithm is proposed to use a
synergistic combination of particle swarm optimization and evolutionary algo-
rithm. Experiment results using some test functions illustrates the feasibility
of the hybrid approach as a multiobjective search algorithm.

In Chapter 8, Dumitrescu et al. propose a new evolutionary elitist approach
combining a non-standard solution representation and an evolutionary opti-
mization technique which permits the detection of continuous decision regions.
Each solution in the final population corresponds to a decision region of Pareto
optimal set. The proposed method is evaluated using some test functions.

Hiroyasu et al. in Chapter 9 addresses the parallel implementation of
multiobjective evolutionary algorithms to manage the computational costs
especially for higher-dimensional problems with large Pareto-sets . They
propose a parallel genetic algorithm for multi objective optimization prob-
lems called Multiobjective Genetic Algorithm with Distributed Environment
Scheme (MOGADES). Further a new mechanism is added to multiobjective
genetic algorithms called Distributed Cooperation model of Multi-Objective
Genetic Algorithm (DCMOGA). In DCMOGA, there are not only individuals
for searching Pareto optimum solutions but also individuals for searching the
solution of one object. After illustrating MOGADES and DCMOGA, these
two algorithms were combined. This hybrid algorithm is called ”Distributed
Cooperation model of Multi-Objective Genetic Algorithm with Environmental
Scheme (DCMOGADES). The performance of DCMOGADES is illustrated
using some test finctions.

In Chapter 10, Montes and Coello describe the general multiobjective op-
timization concepts that can be used to incorporate constraints of any type
(linear, nonlinear, equality and inequality) into the fitness function of a ge-
netic algorithm used for global optimization. Several approaches reported in
the literature are also described and four of them are compared using several
test functions.

Goldberg and Hammerman in Chapter 11 present a new operator which,
when added to a genetic algorithm (GA), improved the performance of the GA
for locating optimal finite state automata. The new operator (termed MTF)
reorganizes a finite state automaton (FSA) genome during the execution of the
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genetic algorithm. MTF systematically renames the states and moves them
to the front of the genome. The operator was tested on the ant trail problem.
Across different criteria (failure rate, processing time to locate a solution,
number of generations needed to locate a solution), the MTF-enhanced GA
realized speedups between 110% and 579% over the non-enhanced version. In
addition, the successful FSAs found by the genetic algorithm augmented with
MTF were 25%-46% smaller in size than those found by the original GA.

In the last chapter, Lagaros et al. deals with a practical problem of struc-
tural sizing. The aim is to minimize the weight of the structure under certain
restrictions imposed by design codes. Authors present two approaches (rigor-
ous and simplified) with respect to the loading condition and their efficiency is
compared to find the optimum design of a structure under multiple objectives.
In the context of the rigorous approach a number of artificial accelerograms
are produced from the design response spectrum of the region for elastic struc-
tural response, which constitutes the multiple loading conditions under which
the structures are optimally designed. This approach is compared with the
approximate one based on simplifications adopted by the seismic codes. Ex-
periment results reveal that the Pareto sets obtained by the rigorous approach
and the simplified one were different.
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