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Abstract. This paper proposes a Flexible Neural Tree (FNT) model
for informative gene selection and gene expression profiles classification.
Based on the pre-defined instruction/operator sets, a flexible neural tree
model can be created and evolved. This framework allows input vari-
ables selection, over-layer connections and different activation functions
for the various nodes involved. The FNT structure is developed using the
Extended Compact Genetic Programming and the free parameters em-
bedded in the neural tree are optimized by particle swarm optimization
algorithm. Empirical results on two well-known cancer datasets shows
competitive results with existing methods.

1 Introduction

The classification of cancers from gene expression profiles is actively investi-
gated in bioinformatics. It commonly consists of feature selection and pattern
classification. In advance, feature selection selects informative features useful to
categorize a sample into predefined classes from lots of gene expression profiles.
Pattern classification is composed of learning a classifier with those features and
categorizing samples with the classifier.

Much research effort has been devoted to exploring the informative gene se-
lection from microarray data. Typical effective feature reduction methods in-
clude principal components analysis (PCA), class-separability measure, Fisher
ratio and t-test. Evolutionary based feature selection methods are alternatives of
the gene selection approaches. A probabilistic model building genetic algorithm
based informative selection method was proposed in [1]. Genetic programming
can be also used to select informative gene and classification of gene expression
profiles [2]. After the gene selection was performed, many candidate classifiers
can be employed for classification of microarray data, including Bayessian net-
work, KNN, neural networks, support vector machine [12], random forest [4] etc..
For a recent review, the reader is refer to ref. [3]. Classification algorithms that
directly provide measures of variable importance are of great interest for gene se-
lection, specially if the classification algorithm itself presents features that make
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it well suited for the types of problems frequently faced with microarray data.
Random forest is one such algorithm [4]. The proposed FNT method is another
alternative.

This papers proposes a Flexible Neural Tree (FNT) [5][6] for selecting the
input variables and forecasting exchange rates. Based on the pre-defined instruc-
tion/operator sets, a flexible neural tree model can be created and evolved. FNT
allows input variables selection, over-layer connections and different activation
functions for different nodes. In our previous work, the hierarchical structure was
evolved using Probabilistic Incremental Program Evolution algorithm (PIPE)
with specific instructions. In this research, the hierarchical structure is evolved
using the Extended Compact Genetic Programming (ECGP), a tree-structure
based evolutionary algorithm. The fine tuning of the parameters encoded in the
structure is accomplished using particle swarm optimization (PSO). The pro-
posed method interleaves both optimizations. Starting with random structures
and corresponding parameters, it first tries to improve the structure and then as
soon as an improved structure is found, it fine tunes its parameters. It then goes
back to improving the structure again and, fine tunes the structure and rules’ pa-
rameters. This loop continues until a satisfactory solution is found or a time limit
is reached. The novelty of this paper is in the usage of flexible neural tree model
for selecting the informative genes and for classification of microarray data.

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT
model are described as S = F

⋃
T = {+2, +3, . . . , +N}

⋃
{x1, . . . , xn}, where

+i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments.
x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments. The out-
put of a non-leaf node is calculated as a flexible neuron model (see Fig.1). From
this point of view, the instruction +i is also called a flexible neuron operator
with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e., +i(i =
2, 3, 4, . . . , N) is selected, i real values are randomly generated and used for
representing the connection strength between the node +i and its children. In
addition, two adjustable parameters ai and bi are randomly created as flexible
activation function parameters. For developing the forecasting model, the flexible
activation function f(ai, bi, x) = e

−( x−ai
bi

)2 is used. The total excitation of +n

is netn =
∑n

j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n) are the inputs to node +n.
The output of the node +n is then calculated by outn = f(an, bn, netn) =
e−( netn−an

bn
)2 . The overall output of flexible neural tree can be computed from

left to right by depth-first method, recursively.

2.1 Tree Structure Optimization

Finding an optimal or near-optimal neural tree is formulated as a product of evo-
lution. In our previous studies, the Genetic Programming (GP) and Probabilistic
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

Incremental Program Evolution (PIPE) have been explored for structure opti-
mization of the FNT [5][6]. In this paper, the Extended Compact Genetic Pro-
gramming (ECGP) [7] is employed to find an optimal or near-optimal FNT
structure.

ECGP is a direct extension of ECGA to the tree representation which is based
on the PIPE prototype tree. In ECGA, Marginal Product Models (MPMs) are
used to model the interaction among genes, represented as random variables,
given a population of Genetic Algorithm individuals. MPMs are represented as
measures of marginal distributions on partitions of random variables. ECGP is
based on the PIPE prototype tree, and thus each node in the prototype tree
is a random variable. ECGP decomposes or partitions the prototype tree into
sub-trees, and the MPM factorises the joint probability of all nodes of the proto-
type tree, to a product of marginal distributions on a partition of its sub-trees.
A greedy search heuristic is used to find an optimal MPM mode under the
framework of minimum encoding inference. ECGP can represent the probability
distribution for more than one node at a time. Thus, it extends PIPE in that
the interactions among multiple nodes are considered.

2.2 Parameter Optimization with PSO

The Particle Swarm Optimization (PSO) conducts searches using a population of
particles which correspond to individuals in evolutionary algorithm (EA) [9]. A
population of particles is randomly generated initially. Each particle represents
a potential solution and has a position represented by a position vector xi. A
swarm of particles moves through the problem space, with the moving velocity of
each particle represented by a velocity vector vi. At each time step, a function fi

representing a quality measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector pi. Furthermore, the best position among all the
particles obtained so far in the population is kept track of as pg. In addition
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to this global version, another version of PSO keeps track of the best position
among all the topological neighbors of a particle. At each time step t, by using the
individual best position, pi, and the global best position, pg(t), a new velocity
for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t) − xi(t)) + c2φ2(pg(t) − xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

2.3 Procedure of the General Learning Algorithm

The general learning procedure for constructing the FNT model can be described
as follows.

1) Create an initial population randomly (FNT trees and its corresponding
parameters);

2) Structure optimization is achieved by using the ECGP algorithm;
3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the PSO algorithm as described in

subsection 2. In this stage, the architecture of FNT model is fixed, and it is
the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded in
the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise go
to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step 2).

2.4 Feature/Input Selection Using FNT

It is often a difficult task to select important variables for a forecasting or clas-
sification problem, especially when the feature space is large. A fully connected
NN classifier usually cannot do this. In the perspective of FNT framework, the
nature of model construction procedure allows the FNT to identify important in-
put features in building a forecasting model that is computationally efficient and
effective. The mechanisms of input selection in the FNT constructing procedure
are as follows. (1) Initially the input variables are selected to formulate the FNT
model with same probabilities; (2) The variables which have more contribution
to the objective function will be enhanced and have high opportunity to survive
in the next generation by a evolutionary procedure; (3) The evolutionary opera-
tors i.e., crossover and mutation, provide a input selection method by which the
FNT should select appropriate variables automatically.
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3 Cancer Classification Using FNT Paradigms

3.1 Data Sets

The colon cancer dataset contains gene expression information extracted from
DNA microarrays [1]. The dataset consists of 62 samples in which 22 are normal
samples and 40 are cancer tissue samples, each having 2000 features. We ran-
domly choose 31 samples for training set and the remaining 31 samples were used
as testing set. (http://sdmc.lit.org.sg/GEDatasets/Data/ColonTumor.zip). The
leukemia dataset consists of 72 samples divided into two classes ALL and AML
[14]. There are 47 ALL and 25 AML samples and each contains 7129 features.
This dataset was divided into a training set with 38 samples (27 ALL and 11
AML) and a testing set with 34 samples (20 ALL and 14 AML) (Availble at:
http://sdmc.lit.org.sgGEDatasets DataALL-AML Leukemia.zip).

3.2 Colon Cancer

The data was randomly divided into a training set of 30 samples and testing set
of 12 for 50 times, and our final results were averaged over these 30 independent
trials (Fig. 2). A FNT model was constructed using the training data and then
the model was used on the test data set. The instruction sets used to create an
optimal FNT forecaster is S = F

⋃
T= {+5, +6, . . . , +9}

⋃
{x0, x1, . . . , x1999}.

Where xi(i = 0, 1, . . . , 1999) denotes the 2000 input variables (genes) of the
classification model.

x337

+6

+9 + 8
x328 x499 x1323

x759 x768 x890 x1048 x349 x1260 x374 x340 x101 x1007
x36 x854 x92 x504 x1172 x540 x1373

Fig. 2. An evolved best FNT for colon data classification

x2356

+ 5

+9 + 6
x3251 x84

x1740 x5038 x2642 x2112 x6300 x2418 x2988 x6884 x769
x5957 x4726 x4537 x818 x4168 x6465

Fig. 3. An evolved best FNT for leukemia data classification



1126 Y. Chen, L. Peng, and A. Abraham

Table 1. The extracted informative genes in case of Colon dataset

x337, x328, x759, x768, x890, x1048, x349, x1260, x374, x340, x101, x499, x1007, x36, x854, x92,

x504, x1172, x540, x1373, x1323

Table 2. The extracted informative genes in case of leukemia dataset

x2356, x3251, x1740, x5038, x2642, x2112, x6300, x2418, x2988, x6884, x769, x5957, x4726, x4537,

x818, x4168, x6465, x84

Table 3. The best prediction rate of some studies in case of Colon dataset

Classifier Classification rate (%)
GA+SVM [10] 84.7± 9.1
Bootstrapped GA+SVM [11] 80.0
Combined kernel for SVM [12] 75.33±7.0
FNT (This paper) 97.09±0.018

Table 4. The best prediction rate of some studies in case of Colon dataset

Classifier Classification rate (%)
Weighted voting [8] 94.1
Bootstrapped GA+SVM [11] 97.0
Combined kernel for SVM [12] 85.3±3.0
Multi-domain gating network [13] 75.0
FNT (This paper) 99.6±0.021

A best FNT tree obtained by the proposed method is shown in Figure 2. It
should be noted that the important features for constructing the FNT model
were formulated in accordance with the procedure mentioned in the previous
section. These informative genes selected by FNT algorithm is shown in Table 1.

For comparison purpose, the classification performances of a genetic algorithm
trained SVM [10], Bootstrapped GA+SVM [11], Combined kernel for SVM [12]
and the FNT method proposed in this paper are shown in Tables 3. It is observed
that the proposed FNT classification models are better than other models for
classification of microarray dataset.

3.3 Leukemia Cancer

As mentioned in Sec. 3.1, the Leukemia dataset is already divided into train-
ing and testing set. To setup the 30 independent trials, A FNT model was
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constructed using the training data and then the model was used on the test
data set. The instruction sets used to create an optimal FNT forecaster is
S = F

⋃
T= {+5, +6, . . . , +9}

⋃
{x0, x1, . . . , x7128}. Where xi(i = 0, 1, . . . , 7128)

denotes the 7129 input variables (genes) of the classification model.
A best FNT tree obtained by the proposed method for leukemia cancer clas-

sification is shown in Figure 3. It should be noted that the important features
for constructing the FNT model were formulated in accordance with the pro-
cedure mentioned in the previous section. These informative genes selected by
FNT algorithm is shown in Table 2.

For comparison purposes, the classification performances of Weighted voting
method [8], Bootstrapped GA+SVM [11], Combined kernel for SVM [12], Multi-
domain gating network [13] and the FNT method proposed in this paper are
shown in Table 4. It is observed that the proposed FNT classification models
are better than other models for classification of microarray dataset.

4 Conclusions

In this paper, we presented a Flexible Neural Tree (FNT) model for informa-
tive gene selection and classification of microarray data simultaneously. We have
demonstrated that the FNT classification model may provide better classifier
than the other classification models. The experimental results also shown a sig-
nificantly improvement in classification accuracy compare to other classifiers
especially in case of Leukemia cancer dataset. This implies that the proposed
FNT model can be used as a feasible solution for classification of microarray
data.
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