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Abstract—This paper presents an application of evolutionary

fuzzy classifier design to a road accident data analysis. A fuzzy

classifier evolved by the genetic programming was used to learn

the labeling of data in a real world road accident data set. The

symbolic classifier was inspected in order to select important

features and the relations among them. Selected features provide

a feedback for traffic management authorities that can exploit

the knowledge to improve road safety and mitigate the severity

of traffic accidents.

I. INTRODUCTION

Labeling of data is a common task in data mining and
data analysis. In this research, we use genetic programming to
evolve a symbolic fuzzy classifier to classify traffic accidents
according to their severity. Further, we select the attributes that
are most important for accident severity classification.

Fuzzy classifiers constitute a class of tools and systems
that exploit the fuzzy set theory to mine, label, and generally
process data. There are simple fuzzy classifiers as well as
complex rule-based fuzzy classification systems that usually
build and maintain sophisticated rule bases. The popularity of
fuzzy classifiers can be attributed to their ability to perform
soft classification, to assign multiple labels to data samples,
and to the ease of their interpretation.

Genetic programming is a nature inspired search and opti-
mization method that was designed to evolve tree-like struc-
tures in an automated manner. As such, it is a good tool to
evolve symbolic expressions such as the fuzzy predictor.

In this work, we use the genetic programming to evolve
a fuzzy predictor inspired by the area of information re-
trieval [16], [12], [13]. When compared to a more complex
fuzzy classifier systems, it can be seen as a single fuzzy rule
that maps data features onto a real value from the range [0, 1].
This evolutionary classification method is used to learn the
severity of traffic accidents in a data set with the records of
real traffic accidents in Ethiopia. The main aim of the research
is the discovery of important attributes and the relations among
them.

A. Fuzzy classification systems evolved by evolutionary algo-
rithms

The design of fuzzy classifiers and fuzzy rule-based systems
has been successfully aided by the nature inspired methods in
the recent years. In this section we summarize few examples
of such an evolution or more generally nature inspired fuzzy

classifier design. For a comprehensive survey on the automated
evolution of fuzzy classification tools see e.g. [2].

Multi-objective evolutionary algorithms were used for the
evolution of linguistic fuzzy rule-based classification systems
in the work of Cordón et al. [3]. Another multi-objective
evolutionary approach to the evolution of fuzzy rule-based
systems was proposed by Ishibuchi and Nojima [7]. They used
a hybrid 2-stage approach that combined an initial heuristic
stage to select fuzzy rules and evolutionary stage to optimize
and tune the system.

Wang et al. [17] used the genetic algorithms to integrate
fuzzy rule sets and membership functions learned from various
information sources. In [6], Freischlad et al. used an evolution-
ary algorithm to generate fuzzy rules for knowledge represen-
tation. Zhou and Khotanzad [20] used a genetic algorithm to
learn various parameters of a fuzzy classification system from
a training data set.

The usage of another nature inspired method - the particle
swarm optimization - for fuzzy classification system design
was studied recently in [15].

II. FUZZY PREDICTOR

In this work we develop a single fuzzy classifier heavily
inspired by the area of information retrieval (IR). In the IR,
the extended Boolean IR model employs fuzzy set theory and
fuzzy logic to facilitate flexible and accurate search [4], [11].
In essence, a search query that contains search terms, oper-
ators, and weights is evaluated against an internal document
representation that is modeled as a fuzzy set of index terms,
i.e. document terms with weights assigned.

In the framework of the fuzzy classifier, we use similar
data structures, basic concepts, and operations as in the fuzzy
IR and we apply them to general data processing such as
classification, prediction, and so forth.

The data base used by the fuzzy classifier is a real valued
matrix. Each row of the matrix corresponds to a single data
record which is interpreted as a fuzzy set of features. Such a
general real valued matrix D with m rows (data records) and
n columns (data attributes) can be mapped to an IR index that
describes a collection of documents.

The fuzzy predictor has the form of a weighted symbolic
expression roughly corresponding to an extended Boolean
query in the fuzzy IR analogy. The predictor consists of
weighted feature names and weighted aggregation operators.

tibe




and:0.4

feature1:0.5 or:0.1
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Fig. 1: Tree form of a fuzzy predictor

The evaluation of such an expression assigns a real value from
the range [0, 1] to each data record. Such a valuation can be
interpreted as an ordering, labeling, or a fuzzy set induced on
the data records.

A. Fuzzy predictor structure

The fuzzy predictor is a symbolic expression that can be
parsed into a tree structure. The tree structure consists of
nodes and leafs (i.e. terminal nodes). In our fuzzy predictor,
we recognize three types of terminal nodes:

• feature node - which represents the name of a feature (a
search term in the IR analogy). It defines a requirement on
a particular feature in the currently processed data record.

• past feature node - which defines a requirement on certain
feature in a previous data record. The index of the
previous data record (current - 1, current - 2 etc.) is a
parameter of the node.

• past output node - which puts a requirement on a previous
output of the predictor. The index of the previous output
(current - 1, current - 2 ) is a parameter of the node.

An example of fuzzy classifier is shown in fig. 1. Written
down using a simple infix notation, a predictor shown in fig. 1
would look like:

feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1
and:0.2 [2]:0.3))

The syntax we use for linear representation of the predictor
is very simple. The feature node is defined by feature name
and its weight (e.g. feature1:0.5), past feature node is defined
by feature name, index of previous record, and weight (e.g.
feature2[1]:0.3), and past output node is defined by the index
of previous output and weight (e.g. [1]:0.5).

Different node types can be used when dealing with dif-
ferent data sets. For example, the past feature node and past
output node are useful for the analysis of time series and data
sets where the ordering of the records matters, but their usage
is pointless for the analysis of regular data sets. The feature
node is the basic building block of predictors developed for
any type of data.

The operator nodes supported currently by the fuzzy pre-
dictor are and, or, and not node but more general or domain

specific operators can be defined. Both nodes and leafs are
weighted to soften the criteria they represent.

B. Fuzzy predictor evaluation

The fuzzy predictor evaluation is inspired by the fuzzy IR
in a similar manner as the data structures it uses. The most
important part of the predictor evaluation is the matching of
feature values in data records to predictor feature weights.
In the IR is the result of such a feature value - feature
weight matching called the retrieval status value (RSV) and
it evaluates how a document satisfies the criteria represented
by a single search criterion defined by the terminal node.

Consider a to be the weight of feature f in the predictor
(i.e. the predictor contains a terminal node f:a) and F (d, f) to
be the value of feature f in data record d 2 D. The terminal
node represents a single criterion. To evaluate this criterion
the function g : [0, 1] ⇥ [0, 1] ! [0, 1] will be used. The
value of g(F (d, f), a) is the actual RSV for data sample d,
feature f , and predictor feature weight a. The key point for
RSV evaluation is the interpretation of the predictor feature
weight a. The most commonly used IR interpretations see the
predictor feature weight as an importance weight, a document
term weight threshold, or an ideal document feature weight [4],
[11].

We are using the threshold interpretation of a and the
equation for RSV evaluation for this case is shown in (1) [4],
[11]. In (1), P (a) and Q(a) are coefficients used to tune the
shape of the threshold curve. An example of P (a) and Q(a)

could be e.g. P (a) =

1+a

2 and Q(a) =

1�a

2

4 . For the threshold
interpretation, a node containing feature f with the weight a
is a request satisfied by data samples having F (d, f) equal or
greater than a. The data samples satisfying this condition will
be awarded with high RSV and the data records with F (d, f)

smaller than a will be awarded with small RSV.

g(F (d, f), a) =

(
P (a)F (d,f)

a for F (d, f) < a

P (a) +Q(a)F (d,f)�a
1�a for F (d, f) � a

(1)

The operators and, or, and not can be evaluated using
fuzzy set operations. Fuzzy set operations are extensions of
crisp set operations on fuzzy sets [18]. They are defined using
the characteristic functions of operated fuzzy sets [8]. In [18]
L. Zadeh defined basic formulas to evaluate the complement,
union, and intersection of fuzzy sets but besides these standard
fuzzy set operations, whole classes of prescriptions for the
complements, intersections, and unions on fuzzy sets were
defined [5].

In this study, we use the standard t-norm (2) and t-conorm
(3) for the implementation of and and or operators and fuzzy
complement for the evaluation of the not operator (4).

t(x, y) = min(x, y) (2)
s(x, y) = max(x, y) (3)

c(x) = 1� x (4)

However, the use of other common t-norm and t-conorm pairs
is of course possible.



The fuzzy predictor presented in this work is a simple
version of a fuzzy classifier. In contrast to more complex
fuzzy rule-based systems that usually constitute traditional
fuzzy classifiers, it consists of a single expression that states
soft requirements on data records in terms of data features.
Moreover, conditions can be put on past feature values and
past output values and therefore allow the predictor to see the
data base as an ordered sequence of records similar to a time
series.

III. GENETIC PROGRAMMING

Genetic programming (GP) is an extension to the popu-
lar nature inspired stochastical optimizer, the genetic algo-
rithms [9], [14]. Genetic algorithms perform an artificial (soft-
ware) evolution of a population of chromosomes representing
potential solutions to an investigated problem encoded into a
suitable data structures, most often fixed length strings of low
cardinality alphabets (e.g. bit strings). The artificial evolution
is performed by an iterative application of genetic operators
modifying the chromosomes, in order to emulate the principles
of the Darwinian evolution, the survival of the fittest, and the
Mendelian inheritance.

The GP extends the genetic algorithms by enabling work
with hierarchical, often tree-like, chromosomes with an uneven
and unlimited length [9], [10]. The GP was introduced as a tool
to evolve simple computer programs and represented a step
towards adaptable computers that could solve problems with-
out being programmed explicitly [1]. Moreover, the GP can
be used to develop solutions in the field of machine learning,
symbolic processing, or any other domain that can formulate
its solutions by means of parseable symbolic expression. GP
allows the efficient evolution of such symbolic expressions
with well-defined syntax and grammar. GP chromosomes take
the form of hierarchical variably-sized expressions, point-
labeled structure trees. The trees are constructed from nodes
of two types, terminals and functions.

The chromosomes are evaluated by the execution of in-
structions corresponding to tree nodes [1]. Terminal nodes
are evaluated directly (e.g. by reading an input variable) and
functions are evaluated after left-to-right depth-first evaluation
of their parameters.

Genetic operators are applied on the nodes of the tree-
shaped chromosomes. A crossover operator is implemented as
the mutual exchange of randomly selected sub-trees of the par-
ent chromosomes. Mutation has to modify the chromosomes by
pseudo-random arbitrary changes in order to prevent premature
convergence and broaden the coverage of the fitness landscape.
Mutation could be implemented as:

i) removal of a sub-tree at a randomly chosen node
ii) replacement of a randomly chosen node by a newly

generated sub-tree
iii) replacement of node instruction by a compatible node

instruction (i.e. a terminal can be replaced by another
terminal, a function can be replaced by another function
of the same arity)

iv) a combination of the above

TABLE I: Random query generation an mutation probabilities.

((a)) Probabilities of generating random nodes.

Event Probability

Generate feature node 0.17
Generate past feature node 0.17
Generate past output node 0.17
Generate op. and 0.24
Generate op. or 0.24
Generate op. not 0.02

((b)) Probabilities of mutation operations.

Event Probability

Mutate node weight 0.5
Insert or delete not node 0.1
Replace with another node or
delete not node

0.32

Replace with random branch 0.08

The GP facilitates an efficient evolution of symbolic expres-
sions. In this work, we use the GP for an automated fuzzy
classifier development.

A. GP for fuzzy predictor evolution

To use the GP for fuzzy predictor learning, we need to
define the encoding, genetic operators, and the fitness function.
The encoding is straightforward because the fuzzy predictor is
in essence a tree (see fig. 1). We create a random population
of such trees (candidate predictors) and apply the GP to evolve
the population. The generation of random predictors is done
with respect to the probabilities summarized in .

The implementation of the crossover operator is also simple:
for every two trees, we swap randomly selected branches. Such
an operation results in valid fuzzy predictors. The mutation
operator is more complex because it has to reflect the domain
of the problem and properties of each node that should be
mutated. The mutation types that were implemented in this
work and the probabilities of their application are shown
in table I(b). The goal of the fuzzy predictor evolution is to
find such a predictor that would describe the same fuzzy set
of data records as indicated in the training data base.

The similarity of two fuzzy sets can be defined as:

⇢(X|Y ) =

(
kX\Y k
kY k kY k 6= 0

1 kY k = 0

(5)

where kAk is the ⌃�count, i.e. the sum of the values of
characteristic function for all members of the fuzzy set A [19]:

kAk =

X

x2A

µ

A

(x) (6)

Precision P and recall R are two measures that can be
used to evaluate the effectiveness of an IR system and we
use them to determine the suitability of a candidate fuzzy
predictor. In the IR, precision corresponds to the probability of
retrieved document to be relevant and recall can be seen as the
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probability of retrieving relevant document. We use precision
P and recall R to evaluate the similarity of two fuzzy sets:

P = ⇢(t(D)|p(D)) R = ⇢(p(D)|t(D)) (7)

where t(D) stands for the target fuzzy set and p(D) for the
fuzzy set generated by the predictor f . For an easier evaluation,
measures combining precision and recall into one scalar value
were developed. The F-score F is among the most used scalar
combinations of P and R:

F =

(1 + �

2
)PR

�

2
P +R

(8)

We use the F-score F as a fitness function when evolving the
fuzzy predictor. A good fuzzy predictor that generates fuzzy
set that is similar to the training fuzzy set will yield high
precision, recall, and F-score.

IV. LEARNING THE CLASSIFICATION OF TRAFFIC
ACCIDENT TYPES

We have used the fuzzy classifier to learn the labeling of
different classes of data describing traffic accidents in Ethiopia.
We have used a manually created data set obtained from the
Addis Ababa Traffic Office. The data set captures more than
12336 traffic accidents that happened in Ethiopia between the
years 1998 and 2000. The record about each accident contains
information about accident time (e.g. year, month, week, day,
hour), involved vehicle (e.g. vehicle type, technical condition),
driver of the vehicle (e.g. driver age, driving experience),
accident location and local conditions (e.g. road condition, road
orientation, weather situation), and accident victim (e.g. type
of victim, type of collision, injury severity). Several attributes
in the data set are numerical (e.g. accident year) and the rest
is categorial (e.g. vehicle type). The accidents are classified
according to the severity into four classes: accidents with no
injury, accidents resulting in an injury, fatal accidents, and
accidents with an unknown severity.

The goal of this research was to develop a fuzzy classifier
that would label data in the data set. The classifier was not
intended for real-time (e.g. online) labeling of traffic accidents
(especially because the severity of the accident is usually
already known at the time when the data is available) but rather
to see the attributes and the relations among attributes that were
used for accident severity classification. The knowledge of the
important attributes is intended to help in defining new road
traffic regulations, preparing new road safety measures, and
prioritizing traffic management and constructions.

The evolutionary learning was executed independently sev-
eral times to verify the ability of the stochastic genetic pro-
gramming to learn a classifier that would divide the records
to appropriate classes. The settings used for the GP are sum-
marized in table II. The mutation operator was implemented
according to table I(b). We have executed the evolution for
5000 and 10000 generations. On average, the 10000 gen-
erations were processed in 2 and a half minutes. The best
classifier found by the 5000 runs had the fitness 0.973079

(the maximum was 1), the best classifier produced by the

TABLE II: GP settings.

Parameter Value

Population size 100
Crossover probability 0.8
Mutation probability 0.2
F-score � 1.0
No. of. generation 5000 or 10000

TABLE III: Classification results.

Class Size Correct Incorrect Note

Unknown 3 0 3 All unknown records were
classified as no injury.

No injury 9550 9466 84
Injury 2232 2155 77
Fatal 551 0 551 3 fatal records were classified

as unknown, 71 were classi-
fied as no injury, and 474 were
classified as injury

10000 runs had the fitness 0.973842. The best classifier found
during the experiments is shown in fig. 2. Only the features
shown in fig. 2 are considered for the classification. They
were found important during the evolution of the classifier.
The results of classification by the best classifier are shown
in table III. We can see that the attributes taken into account
for the accident record labeling were road surface, victim
health status, driver sex, accident sub city, accident hour,
accident month, driver age, vehicle type, vehicle technical
status, vehicle service year, driving licence, driving experience,
and road orientation. Some of the attributes are intuitively
important (e.g. the type of vehicle can have great influence
on the severity of the accident) but some of them are rather
surprising (e.g. accident month, road orientation). The results
are not bad considering the incompleteness of the data set and
unbalanced size of the classes. We can see that the evolved
classifier was able to separate classes no injury and injury
but it failed to assign the fatal accident severity class its own
label. However, the majority of fatal accidents were classified
as an injury, i.e. they were recognized as more dangerous
than accidents with no injury. Even with the whole fatal class
misslabeled, the precision of the classifiaction reached 94.2%.
The result suggests that a separate classifier for each class
should be evolved to reach better precision and sensitivity of
the labeling.

V. CONCLUSIONS

We have used genetic programming to evolve a fuzzy
classifier to label records in a data set describing traffic
accidents. A real world data set from Ethiopia was used to train
the classifier. Thanks to the symbolic nature of the classifier,
the attributes that were used for data labeling can be easily
extracted and explored. The most successful classifier used
only 13 attributes out of 43 available attributes. The number of
important attributes, their relations and weights were selected
automatically and they represent an important knowledge that
can be exploited to improve road safety.

In the future, we want to improve the data set and the
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Fig. 2: Best classifier

precision of the classification. We will eliminate the noise
(i.e. records with unknown class) from the data, remove the
most incomplete records and balance the accident severity
classes. Next, we will evolve classifiers for other attributes
that represent accident results (attributes with categories such
as property damage etc.). Moreover, another variant of the RSV
might be evaluated for categorial data.
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