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I. INTRODUCTION

We observe an increasing interest and convergence among
mathematics, computing and biology. By means of math-
ematical concepts and computing devices, the analyzed
quantity of biological data is in continuous expansion. The
concept of Natural Computing was introduced by several
researchers ([5], [6], [14], [15]) in order to design computing
systems mimicking nature inspiration by observing compu-
tational processes in nature or analyzing complex natural
phenomena. We only refer to works like [1], [8-13] , [16-22]
as a few examples of the variety of areas that can be touched
by the nature inspiration methods. It is certain that at both
levels of information technology and fundamental research,
this highly interdisciplinary field connects all natural sci-
ences with computing and mathematics sciences. An entire
convolution of areas and topics are defining it by including,
on one hand, as much pure theoretical research as algorithms
and software applications (see [2] or [4]). On the other
hand, areas of biology, chemistry and physics experimental
research are also included. A meaningful interpretation of
the meaning of Natural Computing was introduced in [6]
as being ”the field of research that investigates models and
computational techniques inspired by nature and, dually,
attempts to understand the world around us in terms of
information processing”.

Inspired by nature and in a natural computing spirit, we
propose a theoretical design (for the moment) of object
compounds. The purpose is to create a background for
information processing support as by object compounds
we understand the formalism needed in the construction
of (biological inspired equivalent) classes of molecules,
compounds or complex - like objects.

In the next Sections, we introduce the formalism imposed
by the theoretical design of object compounds. We start with

some preliminaries and then introduce the construction of
the formal classes of object compounds.

II. PRELIMINARIES

We assume the reader is familiar with the fundamental
concepts from formal languages. Those readers who are not
familiar may please refer to [7] and [15].

Let us choose O to be a nonempty finite alphabet of
abstract symbols (called objects) representing chemicals in
an aqueous solution. If we denote by O∗ the set of all strings
of objects in O and by λ ∈ O∗ the empty string, then O∗

is the free monoid generated by O under the operation of
concatenation. For x ∈ O∗ we may say that the string of
objects x may represent the chemicals in solution needed
for the construction of a well formed molecule (the order
is not important). The notation |x| represents the number of
objects occurrences in x (the total number of the chemicals
needed in the formation of a molecule represented by x)
and we called it the length of x. For a ∈ O, the number of
occurrences of object a in x is denoted |x|a and it is called
the multiplicity of a in x (or simply the number of copies
of object a in x), |x|a ∈ N. If we denote with alph(x)
(alph(x) ⊆ O) the set of symbol objects forming x, then

|x| =
∑

a∈alph(x)

|x|a.

The length of the string of objects obtained by the deletion
from x of all symbols not in U,U ⊆ O is denoted |x|U and

|x|U =
∑
a∈U
|x|a.

The last working definition given here is that of the
Parikh vector of x associated with O for O =
{a1, a2, . . . , am} ,m ∈ N+ (the order of a1, a2, . . . , am is
arbitrary but fixed) is defined as the function ψO : O∗ →
Nm,

ψO(x) = (|x|a1 , |x|a2 , . . . , |x|am)

(for a language L ⊆ O∗ we have ψ(L) = {ψO(x)|x ∈ L}).
We make the observation that all words in O∗ have Parikh
vectors of the same size.



We choose to denote the number of symbol objects
occurrences in an aqueous solution by |O| (not being
confused with the number of objects in alphabet O).
Symbol objects are considered from the alphabet O. For
any a ∈ O, the number of occurrences of the object a in
solution is denoted as |O|a and it is called the multiplicity of
a in solution. The number |O|a ∈ N represents the number
of copies of a in solution (a ∈ O). If |O|a

notation
= ∗, then

we say that the object a is found in an arbitrary number of
copies.

As O is the alphabet objects representing chemicals in
an aqueous solution, what has a major importance is the
concentration, the number of copies of each object. In order
to illustrate this, we consider a multiset as the data structure
we will work with. Formally, a multiset over the alphabet
O of objects is a mapping M : O → N ∪ {∗}, defined by

M(a) =


|M |a, if a ∈ O and it represents the number

of copies of a into the multiset M
*, if there is an arbitrary finite number

of copies of a into the multiset M

We make the observation that the mapping M , describing
the multiset, must not be confused with the notation |M |a
representing the number of copies of a into the multiset M .
We denote by alph(M) = {a ∈ O|M(a) > 0} the finite
alphabet of the multiset M (one may say the support of
M ). Generally, we can consider that S ⊆ O is interpreted
as the multiset defined by{

∀a ∈ S, S(a) = 1
∀a /∈ S, S(a) = 0

(any subset of O is a multiset in which each object element
is found in a unique copy).

For any two multisets M1,M2 : O → N ∪ {∗} a series of
properties can be defined:
• For M1(a) 6= ∗ and M2(a) 6= ∗, we say that M2 is

included in M1 if and only if M1(a) ≥M2(a), for all
a ∈ O.

• The union of M1 with M2 is the multiset M1 ∪M2 :
O → N ∪ {∗}, (M1 ∪ M2)(a) = M1(a) + M2(a),
for all a ∈ O. (If M1(a) = ∗ or M2(a) = ∗ then
(M1 ∪M2)(a) = ∗.)

• The difference between M1 and M2 (defined only if M2

is included in M1) is the multiset M1−M2 : O
◦−→ N∪

{∗}, (M1 −M2)(a) = M1(a)−M2(a), for all a ∈ O,
M1(a) ≥M2(a), M1(a),M2(a) finite. (If M1(a) = ∗,
then (M1 −M2)(a) = ∗)

From these properties above, a multiset M over a finite
support can be written as

M = {(a,M(a))|a ∈ alph(M)} .

Example. For alph(M1) = alph(M2) = {a, b, c ∈ O|
Mi(a) > 0,Mi(b) > 0,Mi(c) > 0, i ∈ {1, 2}}, if M1 =
{(a, 3), (b, 2), (c, ∗)} then M1 is the multiset over O with
the support alph(M1) and consists in three objects a, b, c
such as object a appears in three copies, b is found in two
copies and c in an arbitrary finite number of copies in M1.
Similarly, M2 = {(a, 1), (b, 2), (c, 3)}. It can be easily seen
that M2 is included in M1.

• As (M1 ∪M2)(a) = M1(a) + M2(a) = 3 + 1 = 4,
(M1 ∪ M2)(b) = M1(b) + M2(b) = 4 and (M1 ∪
M2)(c) = M1(c) +M2(c) = ∗, we obtain the multiset
M1 ∪M2 = {(a, 4), (b, 4), (c, ∗)}.

• As (M1 −M2)(a) = M1(a) −M2(a) = 3 − 1 = 2,
(M1 − M2)(b) = M1(b) − M2(b) = 0 and
(M1 −M2)(c) = M1(c) −M2(c) = ∗, we obtain the
multiset M1 −M2 = {(a, 2), (c, ∗)}.

Obviously, every string x ∈ O∗ describes a multiset
Mx over O and we write Mx = {(a, |x|a)|a ∈ alph(x)}.
We recall that the alphabet O is defined as O =
{a1, a2, . . . , am} ,m ∈ N+. Let us consider the string
x = ai1ai2 . . . ain ∈ O∗, n ∈ N+ being finite, 1 ≤ ij ≤ m,
1 ≤ j ≤ n (the order of ai1 , ai2 , . . . , ain is arbitrary
in the alphabet O, but fixed) and Sn the set of all per-
mutations of n elements. If we choose any permutation
π ∈ Sn, then we define a mapping fπ : On → On such
as fπ(ai1 . . . ain) = aπ(i1) . . . aπ(in)

notation
= y, y ∈ O∗

and ψO(y) = (|y|a1 , |y|a2 , . . . , |y|am). We defined y, a
permutation of x.
From

• alph(x) = alph(y);
• ψO(y) = (|y|a1 , |y|a2 , . . . , |y|am);
• because y is a permutation of x,

(|x|a1 , |x|a2 , . . . , |x|am) = (|y|a1 , |y|a2 , . . . , |y|am);

we have that ψO(x) = ψO(y).
So, if

• Mx =
{

(ai1 , |x|ai1 ), (ai2 , |x|ai2 ), . . . (ain , |x|ain )
}

;

• My =
{

(aπ(i1), |y|aπ(i1)
), (aπ(i2), |y|aπ(i2)

), . . . (aπ(in), |y|aπ(in)
)
}

;
• y is obtained by a permutation of x;

then Mx = My .
We may say that permutations of the same string x ∈ O∗
are describing exactly the objects in the support of M and
their multiplicities (permutations of the same string are
describing exactly the same multiset over O).

We will represent the multiset
M = {(ai1 ,M(ai1)), (ai2 ,M(ai2)), . . . , (ain ,M(ain))},
with alph(M) = {ai1 , . . . , ain}, as the string
a
M(ai1 )
i1

a
M(ai2 )
i2

. . . a
M(ain )
in

.



Example. Let us consider the string x ∈ O∗, x = abcaadff
with alph(x) = {a, b, c, d, f}. The Parikh vector associated
with x over O is

ψO(x) = (|x|a, |x|b, |x|c, |x|d, |x|f ) = (3, 1, 1, 1, 2).

If we consider the permutation π ∈ S8,

π =

(
1 2 3 4 5 6 7 8
3 1 2 5 4 8 7 6

)
such as there is a mapping fπ : O8 → O8 with
fπ(a1 . . . a8) = aπ(1) . . . aπ(8) = y, then fπ(abcaadff) =
cabaaffd = y and the Parikh vector associated with y
is ψO(y) = (|y|a, |y|b, |y|c, |y|d, |y|f ) = (3, 1, 1, 1, 2). As
alph(y) = alph(x), we have that ψO(x) = ψO(y) when y
is a permuted string obtained from x.

The notion of a multiset may be extended for strings. A
multiset over O∗ is a mapping M : O∗ → N∪{∗}, defined
by

M(x) =



|M |x, if x ∈ O∗ and it represents the number
of copies of the string x into the
multiset M

*, if there is an arbitrary finite number
of copies of the string x into the
multiset M

Once again, we make the observation that the mapping
M , describing the multiset, must not be confused with the
notation |M |x representing the number of copies of x into
the multiset M .
We denote by

alph(M) =
{
x ∈ O∗|∃aij ∈ alph(x), ij = 1,m, j = 1, n,

n ∈ N, alph(x) ⊆ O, such as M(aij ) > 0 and
ψO(x) = (|x|a1 , . . . , |x|am)}

the finite alphabet of multiset M (one may say the
support of M ). Generally, we can consider that S ⊆ O∗ is
interpreted as the multiset defined by{

∀x ∈ S, S(x) = 1
∀x /∈ S, S(x) = 0

(any subset of O∗ is a multiset in which each string object
is found in a unique copy).

The strings x ∈ alph(M) are legally strings of chemicals in
solution (corresponding to the biologically micro-molecules)
needed in the formation of well formed macro-molecules.

The multiset M of a finite support can be represented
either by a set M = {(x,M(x))|x ∈ alph(M)}, either
as a string of the form x

M(x1)
1 x

M(x2)
2 . . . x

M(xn)
n , for

alph(M) = {x1, . . . , xn} and the multiplicities of the
objects in the support M(x1),M(x2), . . . ,M(xn). All
permutations of this string identify objects in the support

(alphabet) of M and their multiplicities. For two multisets
M1 and M2 the inclusion, union and difference between
them are defined as above.

Example. The string (ab)3(abb)2(aa)∗ describes the multiset
of string objects containing three copies of ab, two copies of
abb and an arbitrary number of copies of the string aa. Here,
alph(M) = {ab, abb, aa}∪{(, )}, where the parentheses are
used for a better representation of string molecules in M .

III. FORMAL CLASSES OF OBJECT COMPOUNDS

In this section we formalize an hierarchical construction
comprising the three nested languages that describe the
primary, secondary and tertiary structures of object com-
pounds. Objects are the elementary data we will work with.
By object compounds we understand the formalism needed
in the construction of classes of molecules, compounds or
complex - like objects (for biological inspired equivalent see
[3]).

A. Formalization of primary structures of object compounds

We construct here a finite set of rules for object com-
pounds formation. We will refer to the formed object com-
pound with the term of molecular formula. The construction
is inspired from biological molecular compounds formation
(molecules, macro-molecules, organic compounds or organic
complexes).

We consider the sets of string objects over O∗ recurrently
defined as follows: if for all k, i ∈ {1, ..., n} we denote
by Mk(ai) the multiplicity of ai in Mk for all objects
ai ∈ alph(Mk) with alph(Mk) ⊆ O∗, then

• M1 =
{
a
M1(ai)
i |∀i ∈ {1, ..., n} , ai ∈ alph(M1),

alph(M1) = {a1, ..., an}}
• M2 =

{
a
M2(ai1 )
i1

a
M2(ai2 )
i2

|∀i1, i2 ∈ {1, ..., n} , ai1 , ai2 ∈
alph(M2), alph(M2) = {a1a2, a1a3, ..., anan−1}∪
alph(M1)}
...

• Mn =
{
a
Mn(a1)
1 a

Mn(a2)
2 ...a

Mn(an)
n |∀i ∈ {1, ..., n} , ai ∈

alph(Mn), alph(Mn) = {a1a2...an} ∪ alph(Mn−1)∪
. . . ∪ alph(M1)}

For all k ∈ {1, ..., n}, we define

Mk =
{
a
Mk(ai1 )
i1

a
Mk(ai2 )
i2

...a
Mk(aik )

ik
|∀i1, ..., ik ∈ {1, ..., n} ,

ai1 , ..., aik ∈ alph(Mk), alph(Mk) = {a1a2...ak, . . . ,
an−k+1an−k+2...an} ∪ alph(Mk−1) ∪ . . . ∪ alph(M1) and
for all r1, r2 ∈ {1, ..., n} with r1 6= r2 we have ir1 6= ir2}.

If we denote [M ] = {Mk|k ∈ {1, .., n} , n ∈ N, n ≥ 1
(finite),Mk defined as above}, then we have [M ]∗ the
set of all string objects formed with elements of Mk for



k ∈ {1, ..., n} under the operation of concatenation.

Over [M ]∗ we define a rewriting rule, denoted ”⇒”
(⇒⊆ [M ]∗ × [M ]∗), such as for any k1, k2 ∈ {1, ..., n}
with k1 ≥ k2 and Mk1 ,Mk2 ⊆ [M ]∗ the pair
(x1, x2) ∈ Mk1 × Mk2 . We say that the string x1 is
rewrited into the string x2 and we write x1 ⇒ x2 if and
only if the string x1 ∈Mk1 has the form

x1 = a
Mk1

(ai1 )

i1
a
Mk1

(ai2 )

i2
...a

Mk1
(air1

)

ir1
...a

Mk1
(airp )

irp
...a

Mk1
(aik1

)

ik1

such as

• there is r1, r2, ..., rp ∈ {1, ..., k1}, 1 ≤ p ≤ k1 with
ir1 = ir2 = ... = irp

notation
= ir

• for all j ∈ {1, ..., k1} with j 6= rl for all l ∈ {1, ..., p}
we have ij 6= irl

then the string x2 ∈Mk2 has the form

x2 = a
Mk2

(ai1 )

i1
...a

Mk2
(air )

ir
...a

Mk2
(aik2

)

ik2

where

• Mk2(air ) = Mk1(air1 ) +Mk1(air2 ) + ...+Mk1(airp )
• if for all j1 ∈ {1, ..., k1} with j1 6= rl, for all l ∈
{1, ..., p} and for all j2 ∈ {1, ..., k2} with j2 6= r, we
have ij1 = ij2 , then Mk1(aij1 ) = Mk2(aij2 ).

We make the observation that this definition must not be
confusing regarding one possible condition found in the
writing of x1 consisting in ir1 = ir2 = ... = irp

notation
= ir

with the definition of terms of Mk above which must
be distinct. The reason of this potential confusion can be
easily understand, but the reader can observe the distinction
between Mk belonging to [M ] and x1 belonging to Mk1

which in turn is included in [M ]∗ ([M ] is not the same with
[M ]∗).

We will denote the set [M ]∗⇒ = {x2 ∈Mk2 | there is
(x1, x2) ∈ Mk1 ×Mk2 for k1 ≥ k2 and Mk1 ,Mk2 ∈ [M ]∗

such as for all x1 ∈Mk1 , x1 ⇒ x2}. The set [M ]∗⇒ is
called the compounds domain and, to simplify the writing,
from now on we will refer to it by the notation CD.

Example. Let us take two strings from M1, let say
a
M1(a1)
1 and a

M1(a2)
2 . Under the concatenation, a new

string a
M1(a1)
1 a

M1(a2)
2 is formed. It belongs to M2.

Example. Considering the string objects aM1(a1)
1 ∈ M1 and

a
M2(a1)
1 a

M2(a2)
2 ∈ M2, under the concatenation operation,

it results the new string a
M1(a1)
1 a

M2(a1)
1 a

M2(a2)
2 . Applying

the rewriting rule above, in M2 is obtained a new string of
the form a

M1(a1)+M2(a1)
1 a

M2(a2)
2 .

In the following we will consider P1 a finite set of rules in
M1 × ...×M1 × CD.

1) Molecular formula production rules: Production rules
of molecular formulas are elements of the form (x, y) ∈ P1

with x ∈M1 × ...×M1. We consider M1 × ...×M1 of m
times if we suppose we want to form an object compound
formula in which composition we need m elementary objects
(each of them representing the biological equivalent of
chemicals swimming in an aqueous solution). We have
y ∈ CD. The rules have the form:

M1/x→Mnew
1 /y

where if
• M1 =

{
a
M(a1)
1 , ..., a

M(ai1 )
i1

, ..., a
M(ai2 )
i2

, ..., a
M(aim )
im

, ...

a
M(an)
n |∀k ∈ {1, ..., n} , ak ∈ alph(M1), alph(M1) =
{a1, ..., an}} and

• x = (aj1i1 , a
j2
i2
, ..., ajmim ) for jk ∈ N, 0 ≤ jk ≤M(aik)

then
• y = aj1i1a

j2
i2
...ajmim and

• Mnew
1 =

{
a
M(a1)
1 , ..., a

M(ai1 )−j1
i1

, ..., a
M(ai2 )−j2
i2

, ...,

a
M(aim )−jm
im

, ...a
M(an)
n |∀k ∈ {1, ..., n} ,

ak ∈ alph(M1), alph(M1) = {a1, ..., an}} .
If there is ak ∈ M1 such as M1(ak) = ∗, then
M1(ak)− jk = ∗.

We call such elements y ∈ CD well-formed molecular
formulas.

2) Molecular formula decomposition rules: Decomposi-
tion rules of molecular formulas are elements of the form
(y, x) ∈ P1 with x ∈ M1 × ... × M1. We consider
M1 × ...×M1 of m times if we suppose that, by applying
this rule, the molecular formula is decomposed into m
elementary objects. We have y ∈ CD. The rules have the
form:

M1/y →Mnew
1 /x

where if
• M1 =

{
a
M(a1)
1 , ..., a

M(ai1 )
i1

, ..., a
M(ai2 )
i2

, ..., a
M(aim
im

, ...

a
M(an)
n |∀k ∈ {1, ..., n} , ak ∈ alph(M1), alph(M1) =
{a1, ..., an}} and

• y = aj1i1a
j2
i2
...ajmim

then
• x = (aj1i1 , a

j2
i2
, ..., ajmim ) for jk ∈ N, 0 ≤ jk ≤ M(aik)

and

• Mnew
1 =

{
a
M(a1)
1 , ..., a

M(ai1 )+j1
i1

, ..., a
M(ai2 )+j2
i2

, ...,

a
M(aim )+jm
im

, ...a
M(an)
n |∀k ∈ {1, ..., n} ,

ak ∈ alph(M1), alph(M1) = {a1, ..., an}} .



If there is ak ∈ M1 such as M1(ak) = ∗, then
M1(ak) + jk = ∗.

Example. If we consider alph(M1) = {a, b, c} and M1 ={
a3, b2, c∗

}
, then the molecule a3c5 is obtained by apply-

ing the rule M1/(a
3, c5) → Mnew

1 /a3c5 with Mnew
1 ={

b2, c∗
}

.
Example. At the decomposition of the molecular formula
a3c5, if we suppose that the initial content of M1 from the
previous example, then the rule M1/a

3c5 →Mnew
1 /(a3, c5)

is applied and the content of Mnew
1 is Mnew

1 =
{
a6, b2, c∗

}
.

3) Primary structures of object compounds: If instead of
x ∈M1×...×M1 we use elements x ∈Mk1×...×Mkn , for
any arbitrary or any specific choice of k1, ..., kn ∈ {1, ..., n},
then we get well-formed molecular formulas for any
object compounds (thus reflecting the biological inspired
molecules, macro-molecules, organic compounds or
organic complexes). The set of all compounds obtained
in ways described above is called the set (language) of
primary structures of object compounds. In conclusion, we
illustrated, so far, that the primary structure construction
of an object compound (one may say object complex)
is represented by its molecular formula. The set (the
language) of all primary structures of object compounds
(object complexes) is presented below:

SI = {y ∈ CD| there is the set of rules P1 over
Mk1 × ...×Mkn ×CD and there is x ∈Mk1 × ...×Mkn ,
for any arbitrary order or any specific choice of
k1, ..., kn ∈ {1, ..., n}, such as (x, y) ∈ P1} .

(The rule (x, y) ∈ P1 has the form Mk1 × ... ×Mkn/x →
Mnew
k1
× ...×Mnew

kn
/y defined as above.)

B. Formalization of secondary structures of object com-
pounds

We consider P2 a set of rules attaching a structural
arrangement to the primary structure of an object compound,
we call it the secondary structure. The secondary structure
construction of an object compound is represented by
its structural formula. This structural arrangement is
inspired by the way that objects bind together in molecules
formation, in a mathematical sense, without having the same
complexity as in a real biology way. The idea of defining
such a structural formula comes from some physical and
chemical properties of a real organic compound: the way
atoms (different groups of atoms) bind together in forming
organic compounds or complexes.

In our model, we consider two more symbols over
CD: ”|” and ”—”. The symbol ”|” is used to illustrate the
attachment of the structural arrangement to the primary

structure of a compound, while ”—” represents the bounds
between atom-like objects (different groups of atom-like
objects) in compounds (complexes) formation. We make
once again the observation that although in biology and
bio-chemistry there are different types of chemical bounds,
it is not our goal to represent an accurate reality, but to
construct a mathematical model of a molecule, compound
or complex. This is the reason why the symbol ”—” will
represent only one bounding type (or all bounding types if
one prefers) between atoms-like objects (between different
groups of atoms-like objects).

The rule of structural arrangement of an object
molecule/compound/complex in P2, has the form
(y, w) ∈ P2 with P2 ⊆ SI × CD ∪ {|,−} and we
denote it by the symbol `SI . It associates, to each
molecular formula, a distribution of atoms-like objects
(different groups of atoms-like objects) in the formation of
a structural formula.

For y ∈ SI of the form y = aj11 ...a
jm
m we have y `SI w if

and only if
• z = aj111 ...ajm1

m − aj121 ...ajm2
m − ..... − aj1p1 ...a

jmp
m , for

1 ≤ p ≤ m, p ∈ N and for all l ∈ {1, ...,m} we have∑p
k=1 jlk = jl with 0 ≤ jlk ≤ jl where

– p represents the number of atoms-like
(groups/complex - like) objects y is formed
of;

– If jlk = 0 then the proper group will no contain
the element ajlkl for k ∈ {1, ..., p} and l ∈
{1, ...,m} , k, l,∈ N;

– Each aj1k1 ...ajmkm with k ∈ {1, ..., p} is an element
from CD;

• We denote by Nom a complete set of all legally exist-
ing objects, string objects or string object compounds
coming from a domain where the applicability of this
construction is needed. We need this set to validate the
well-formed structural formulas. Let it be a mapping
ver : CD ∪ {−} → {0, 1}, such as

ver(z) =

{
1, if z ∈ Nom
0, otherwise

If ver(z) = 1 then w
notation

= z and w is called a
well-formed structural formula and it will be denoted
by z.

The attachment of the structural formula to its molecular
formula defines the set (the language) of all secondary
structures of object compounds (object complexes) and it
is denoted by:



SII = {(y|z)| for all y ∈ SI , there is z ∈ CD ∪ {|,−}
such as y `SI z}.

C. Formalization of tertiary structures of object compounds

We consider the set P3 of rules attaching a spatial orien-
tation (of atoms/groups of atoms-like objects in its constitu-
tion) to a compound from SII . The universal alphabet of all
possible spatial configurations of objects is Γ. As our work
has its inspiration in biology where the spatial arrangement
of atoms/groups of atoms in a real molecule is finite (for
example, there are only a few possibilities of different
protein spatial conformations), the term universal alphabet
is used here to refer to all three-dimensional structures of
all object compound types. In other words, Γ is the set of
all three-dimensional structures, the spatial arrangements of
the secondary structures in SII and we will refer to it as the
set of all spatial configurations.

Let it be Γ = {Γ1,Γ2, ...,Γq}, where q ∈ N, q ≥ 1, q
fixed. Γ∗ is the set of all possible strings of configurations
under the operation of concatenation. A rule in P3 has the
form (u, v) ∈ P3 with P3 ⊆ SII × Γ∗ and we denote it by
the symbol |=SII . We write that

for u ∈ SII there is v ∈ Γ∗ such as u |=SII (u|v).

So, we have

for u ∈ SII , u = (y|z) there is v ∈ Γ∗ such as
(y|z) |=SII (y|z|v).

We define the set (language) of all tertiary structures of
object compounds (object complexes) as

SIII = {(y|z|v)| for y ∈ SI , y `SI z there is v ∈ Γ∗

such as (y|z) |=SII (y|z|v)}.

This hierarchical construction of the complex cascading
language of objects molecules (compounds or complexes),
comprising the three nested languages describing their pri-
mary, secondary and tertiary structures, can be graphically
represented as it can be seen in Figure 1.

IV. CONCLUSIONS

Still, found in its early stages, a generally accepted
common language to describe the biological inspired ideas
already introduced within the pages of this article is still
to be developed and commonly accepted. We introduced
the original construction of the formal classes in defining
the object compounds (a formalism needed in the construc-
tion of biological inspired equivalent classes of molecules,
compound or complex - like objects). The purpose was
found into creating a formal background for this kind of
information processing support.

*

Figure 1. The hierarchically construction of the complex cascading lan-
guage of objects compounds. It comprisis three nested languages describing
their primary, secondary and tertiary structures.
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