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Abstract— This paper proposes a rough set reduction scheme
for Support Vector Machine (SVM). In the proposed scheme,
SVM is used for the classification task based on the significance
of each feature vector, while rough set is applied to improve fea-
ture selection and data reduction. Particle Swarm Optimization
(PSO) is used to optimize the rough set feature reduction. The
feature vectors are constructed to obtain classification results
more effectively. We applied the new approach to classify the
brain cognitive state data sets from a cognitive Functional
Magnetic Resonance Imaging (fMRI) experiment, in which
the subjects perform the task of discerning the orientation of
symbols. Empirical results indicate that by using the proposed
hybrid scheme it is feasible to achieve either single or multiple
subject cognitive state classification more efficiently.

I. INTRODUCTION

Support Vector Machines (SVMs) are well-known for
classification related problems [1]. For pattern classification
problems, SVMs have proven track record for good gen-
eralization performance without the requirement of much
domain knowledge of the considered problem [2]. To apply
a SVM classifier, there are two important steps: one is
feature selection (new features are selected from the original
inputs), another is the reduction of the training dataset.
Some heuristic methods were introduced for accelerating
SVM training [3], [4]. Principal Component Analysis (PCA)
linearly transforms a high-dimensional input vector into a
low-dimensional one [5], it is an important method for
feature selection and from the view point of minimizing the
reconstruction error. Nevertheless, PCA does not guarantee
that selected first principal components, as a feature vector,
will be adequate for classification. It has been found that in
many PCA applications, it is difficult to select the number of
the first dominant principal components as the feature vector.

Rough set theory [6], [7], [8] provides a mathematical tool
that can be used for both feature selection and reducing
the dataset. It is an attractive alternative for SVM data
preprocessing [9], [10]. In this paper, an approach that
unifies subspace feature selection and optimal classification
is presented. SVMs provide learning method based on the
significance of each feature vector while rough set is applied
to improve feature selection and recognition. The feature
vectors are modified to obtain classification results, which
provide lower classification error and better generalization
than can be obtained by the support vector classifiers on raw
datasets.
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Rest of the article is organized as follows. Some basic
introduction of SVM and rough set are provided in Sections
2 and 3. Proposed rough set based reduction scheme is also
introduced in Section 3. Experiment results are provided in
Section 4 and some conclusions are provided towards the
end.

II. SUPPORT VECTOR MACHINE FOR CLASSIFICATION

SVMs learn from a set of l high-dimensional example
vectors xi, and their associated classes yi, i.e.

{x1, y1}, . . . , {xn, yn} ∈ Rd × {±1}. (1)

SVMs map the input vectors xi into a high-dimensional
feature space E through some mapping function φ(x) and
construct an optimal separating hyperplane in this space. In
the linear case, the separating hyperplane given by an SVM
is:

wφ(x) + b = 0. (2)

where w is the weight vector and b the bias (or −b is the
threshold). If it is not linearly separable, the SVM projects
these training vectors into a high-dimensional feature space
F using a kernel function K(x, x′) that defines an inner
product in this space. Therefore, its hypothesis space can be
formulated as follows:

H = {x 7→ h(x) = sign[
l∑

i=1

a∗i yiK(x, x′) + b]}. (3)

where the coefficients a∗i are obtained by maximizing the
following functions:

w(a) =
l∑

i=1

ai − 1
2

l∑

i=1

l∑

j=1

aiajyiyjK(x, x′). (4)

with the following constraint:

l∑

i=1

aiyi = 0 and ai ≥ 0, i = 1, . . . , l. (5)

where ai are positive Lagrange multipliers introduced for
solving the primal problem for the non-separable cases. The
coefficients a∗i define a hyperplane with the maximal margin
in F . So that the optimal solution is given by (4) with weight
vector

w∗ =
l∑

i=1

a∗i yiφ(x). (6)

The solution obtained is often sparse since only those ai

with non-zero Lagrange multipliers appear in the solution.



The support vectors in SVMs are the critical points near
the boundary between the two classes, which determine an
optimal separating hyperplane. Alleviating redundant infor-
mation and removing any training points that are not support
vectors will have no effect on the hyperplane found. This is
important when the data to be classified are very large, as
is often the case in practical data mining situations. Besides,
SVMs map the input vectors into a high-dimensional feature
space. Feature selection of the vectors is another issue for
improving the performance of SVMs.

III. ROUGH SET REDUCTION SCHEME

Rough set theory has been proposed by Pawlak for knowl-
edge discovery in databases and experimental data sets [6],
[7], [8]. Here, we illustrate only the relevant basic ideas of
rough sets that are relevant to the present work. Certain at-
tributes in a system may be redundant and can be eliminated
without losing essential classification information. One can
consider feature (attribute) reduction as the process of finding
a smaller (than the original one) set of attributes with the
same or close classification power as the original set. For a
given information system, rough set provides a method to
determine the most important attributes from a classification
power point of view [11]. A reduct in rough sets theory is
a minimal set of attributes that preserves partition, which
enables the same classification of objects of the universe as
the whole set of attributes.

Definition 3.1 (Dependency degree) An information sys-
tem can be represented as S =< U,A, V, f >, A = C

⋃
D,

C
⋂

D = ∅. U is the closed universe, a finite set of case
objects; C is the finite set of condition attributes; D is
the finite set of decision attributes; V is the value domain
associating the attributes; f is the total decision function
between condition attributes and decision attributes. For
given U/C = {x1, x2, · · · , xn}, U/D = {Y1, Y2, · · · ,
Ym}, then dependency degree of D with respect to C is as
follows:

kC(D) =
1
|U |

m∑

i=1

|posC(Yi)|. (7)

where |U | is the cardinality of U , posC(Yi) denotes the
positive region of Yi with respect to C. Obviously, 0 ≤
kC(D) ≤ 1. If kC(D)=1, D depends totally on C. This
means that the partition generated by C is finer than the
partition generated by D. If kC(D)= 0, D is independent
totally of C. It means that C has no effect on classification
result for D. If 0 < kC(D) < 1, we say that D depends
partially on C in degree kC(D).

Definition 3.2 (Significance of attributes) An information
system can be represented as S =< U,A, V, f >, A =
C

⋃
D, C

⋂
D = ∅. The significance of an attribute c

(c ∈ C) with respect to D is as follows:

sigD
C−{c}(c) = kC(D)− kC−{c}(D). (8)

Obviously, 0 ≤ sigD
C−{c}(c) ≤ 1. If C = {c}, then

sigD
∅ (c) = kC(D)−k∅(D) = kC(D), where k∅(D) = 0. The

significance of an attribute can be evaluated by measuring

effect of removing the attribute from an information table on
classification defined by the table, which generalizes the idea
of attribute reduction.

The two concepts enable us the evaluation of attributes
not only by two-valued scale, indispensable−dispensable,
but also by assigning an attribute, a real number within
the interval [0, 1] to express its significance in the system.
Usually real world objects are the corresponding tuple in
some decision tables. They store a huge quantity of data,
which is hard to manage from a computational point of
view. Finding reducts in a large information system is still
an NP-hard problem [12], [13], [14], [15]. Some heuristic
based algorithm is a better choice. Hu et al. [16] proposed a
heuristic algorithm using discernibility matrix. The approach
provided a weighting mechanism to rank attributes. Zhong
and Dong [13] presented a wrapper approach using rough
set theory with greedy heuristics for feature subset selection.
The aim of feature subset selection is to find out a minimum
set of relevant attributes that describe the dataset. So finding
reduct is similar to feature selection. Zhong and Dong [13]
algorithm employed the number of consistent instances as
heuristics. Banerjee et al. [11] presented various attempts of
using Genetic Algorithms (GA) in order to obtain reducts.
Although several variants of reduct algorithms are reported
in the literature, at the moment, there is no accredited best
heuristic reduct algorithm. So far, it is still an open research
area in rough set theory.

Particle swarm optimization algorithm is inspired by social
behavior patterns of organisms that live and interact within
large groups. In particular, it incorporates swarming behav-
iors observed in flocks of birds, schools of fish, or swarms
of bees, and even human social behavior, from which the
Swarm Intelligence (SI) paradigm has emerged [17]. The
swarm intelligent model helps to find optimal regions of
complex search spaces through interaction of individuals in a
population of particles [18], [19]. As an algorithm, its main
strength is its fast convergence, which compares favorably
with many other global optimization algorithms [20], [21].
It has exhibited good performance across a wide range of
applications [22], [23], [24], [25], [26].

The particle swarm optimization algorithm is particularly
attractive for feature selection as there seems to be no
heuristic that can guide search to the optimal minimal feature
subset. Additionally, it can be the case that particles discover
the best feature combinations as they proceed throughout the
search space. We can define a particle’s position and velocity
in terms of changes of probabilities that will be in one state
or the other. The particle moves in a state space restricted to
zero and one on each dimension, where the velocity of the ith
particle in the dth dimension vid, represents the probability
of the position of the ith particle in the dth dimension xid

taking the value 1. Each particle remembers its own best
position so far in a vector pi, i is the index of the particle
and the dth dimensional value of the vector pi is pid (i.e. the
position where it achieved its best fitness). The best position-
vector among all the neighbors of a particle is then stored



in the particle as a vector pg and the dth dimensional value
of the vector pg is pgd. The change of probability with time
steps is as follows:

P (xid(t + 1) = 1) = f(xid(t), vid(t), pid(t), pgd(t)). (9)

where the probability function is usually

sign(vid(t + 1) = 1) =
1

1 + e−vid(t)
. (10)

At each time step, each particle updates its velocity and
moves to a new position according to (11)and (12):

vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (pid(t)− xid(t))
+ c2 ∗ r2 ∗ (pgd(t)− xid(t))

(11)

if sign(vid(t + 1)) > ρ, then xid(t + 1) = 1;
else xid(t + 1) = 0.

(12)

where c1, c2 are learning factors; w is inertia factor; r1, r2,
ρ are random functions in the closed interval [0, 1].

During the search procedure, each individual is evaluated
using the fitness. According to the definition of rough set
reduct, the reduction solution must ensure that the decision
ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low
as possible. In the proposed algorithm, we first evaluate the
performance of the potential reduction solution according to
dependency degree and significance of attributes.

Feature selection is based on the minimal description
length principle and tuning methods of parameters of the
approximation spaces to obtain high quality classifiers based
on selected features. As a result of particle swarm search,
rough set generates the reduction of training sets for SVM
classifiers. The process removes the irrelevant features, which
deteriorate the generalization performance of SVM. The high
dimensional patterns are projected into lower dimensional
feature vectors and redundant case objects are removed,
which might provide better classification. We obtain a rough
set reduction scheme for SVM as summarized in Algo-
rithm 1.

IV. APPLICATION OF THE NEW SCHEME IN COGNITIVE
STATE CLASSIFICATION

The study of human brain function has received a tremen-
dous boost in recent years due to the advent of new brain
imaging technique, Functional Magnetic Resonance Imaging
(fMRI) [27], [28]. Apparently, very little is known about the
relationship between the cognitive states and the fMRI data.
We apply the new scheme to a block-design cognitive fMRI
experiment, in which subjects perform the task of discerning
the orientation of symbols.

Ten English speakers participate in this study with in-
formed consent. All the participants are right handed as
assessed by the Edinburgh handedness inventory. The block
stimulus sequence is a series of symbols, in which three sym-
bols with same or different orientation are divided into each
group. We acquired T2∗-weighted images using a single shot

Algorithm 1 A PSO based rough set reduction scheme for
SVM.
Step 1. Convert the dataset for SVM into a decision
table T0 =< U,C, D >. U is the finite set of case
objects; condition attributes C = {c1, c2, · · · , cn}, where ci

corresponds to xi; and decision attributes D = {y}.

Step 2. Calculate the significance of each attribute according
to (8). Let R = ∅. For each ci, if sigD

C−{ci}(ci) 6= 0, then
R ⇐ R∪{ci}. R is a relative reduct of C and its dimension
is d.

Step 3. Initialize a population of particles with random
positions (0 or 1) and velocities (in the interval [0.0, 1.0])
on d dimensions in the problem space.

Step 4. Evaluate the fitness function in d variables
for each particle.

Step 5. Compare the fitness evaluation with the population’s
overall previous best. If the current value is better than
the global best one, then reset the global best value to the
current particle’s array index and value.

Step 6. Update the velocity and position of each particle
according to equations (11) and (12).

Step 7. Go to Step 4 until the criterion is met. The
criterion is usually a sufficiently good fitness, or a maximum
number of time steps, or the global best fitness is steadily
improving within preset time steps.

Step 8. Print output attributes, in which the state of
the particle is 1 for meeting the best fitness. Remove
other attributes and redundant case objects, then get a new
decision table T1, in which the case objects are partitioned
into training set S and test set V for SVM.

echo planar sequence. The images were acquired in the same
session (TR = 2000ms, TE = 45ms, FOV = 240mm,
64 × 64mm matrix). 14 coronal slices were collected and
each one is 7mm thick (skip 1mm). Each section map was
completely collected in 116s resulting in 58 sample images.
The first four volumes of fMRI time series were discarded
to discount saturation effects. The 136-th sections of the ten
subjects are illustrated in Figure 1.

This cognitive state classification problem provides an
interesting case study of classifier learning from extremely
high dimensional and extremely sparse dataset. Some of
active regions are even distinguishing imbalance among the
subjects. In response to this discrepancy, we extract feature
vectors as follows: (1) Transform the datasets from MNI
template to Talairach coordinate system; (2) Find out the
most active voxels in several Brodmann’s areas of level
4 and save their coordinates; (3) Scan fMRI images and
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Fig. 1. Illustration show locations of voxels for for ten subjects
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Fig. 2. Performance comparison of the different classifiers



search the voxels according to the coordinates saved; (4)
Average all voxels in the spherical region whose center is the
corresponding saved voxel; (5) Construct one feature vector
using the results from each single image.

Since the attributes in the feature vector represent dif-
ferent super-voxels, most of them are uncorrelated. PCA
of the dataset indicates the contributing ratio distribution
of principle components is dispersed and the cumulative
contributing ratio increases very slowly. We reconstructed the
SVM with rough set reduction scheme (RS-SVM) and the
SVM with Principal Component Analysis (PCA-SVM). We
selected different principle components as a feature vector,
such as 1PC, 4PCs, 7PCs, 12PCs, 15PCs and more PCs for
PCA-SVMs. We trained distinct classifiers for each subject
at first, using 75% of datasets as training examples.

The achieved performance of single subject classifiers
are listed in Tables I and tab-liu2 for single subject and
multi-subjects, respectively. The performance for single
subject are illustrated in Figure 2(a). We find that 12PCs
have the best results for most of subjects. By selecting
more principal components as the feature vector, some of
the results have not improved but worsened. The reason
for this is perhaps due to noise in the dataset. For subjects
4 and 9, the results of RS-SVMs are slightly better than
PCA-SVMs. Other results of RS-SVMs are not less than
the best results of PCA-SVMs. But for equivalent results,
PCA-SVMs would have to re-train the classifiers according
to the arbitrary number of different principle components.

TABLE I
PERFORMANCE COMPARISON (%) FOR SINGLE SUBJECT.

Subject 1 2 3 4 5 6 7 8 9 10
1PC-SVMs 53 50 52 59 53 57 54 51 53 52
4PC-SVMs 62 60 64 66 69 71 63 71 68 62
7PC-SVMs 76 68 69 81 79 78 76 81 80 73
12PC-SVMs 87 95 90 73 92 99 91 91 70 95
RS-SVMs 91 95 90 83 92 99 91 91 88 95

TABLE II
PERFORMANCE COMPARISON (%) FOR MULTI-SUBJECTS.

Number of Subjects 2 4 6 8 10
1PC-SVMs 53 56 52 51 53
4PC-SVMs 63 67 71 68 62
7PC-SVMs 68 74 79 78 75
12PC-SVMs 88 91 86 86 89
RS-SVMs 89 91 86 87 89

It is necessary for decoding the cognitive states success-
fully so that the multiple people’s cognitive states can be
classified. So we trained and tested new classifiers that
applied across multiple subjects. The results of multiple
subject classifiers are illustrated in Fig.2(b). The accuracies
have the same trend as the single subject classifiers, but the
variances are significantly higher, especially for some of the
subjects, since there are more alternatives for selection.

V. CONCLUSIONS

In this paper, we investigated a particle swarm optimiza-
tion algorithm based rough set reduction scheme for support
vector machines. In the scheme, SVMs are applied to classify
the brain cognitive state based on the significance of the
feature vectors while rough set reduces the data volume
and improves feature selection. We constructed the scheme
to obtain classification results more effectively. The new
approach is tested in a cognitive fMRI experiment, in which
subjects performed the task of discerning the orientation
of symbols. Using the proposed scheme, it is feasible for
either single subject cognitive state classification or multiple
subjects. The results of RS-SVMs are not less than the
best results of PCA-SVMs. But for equivalent results, PCA-
SVMs would have to re-train the classifiers according to the
arbitrary number of different principle components.
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