
ORIGINAL ARTICLE

Ensemble of hybrid neural network learning approaches
for designing pharmaceutical drugs

Ajith Abraham Æ Crina Grosan Æ Ştefan Ţigan

Received: 1 December 2006 / Accepted: 21 December 2006 / Published online: 22 February 2007
� Springer-Verlag London Limited 2007

Abstract Designing drugs is a current problem in the

pharmaceutical research. By designing a drug we mean

to choose some variables of drug formulation (inputs),

for obtaining optimal characteristics of drug (outputs).

To solve such a problem we propose an ensemble of

three learning algorithms namely an evolutionary arti-

ficial neural network, Takagi-Sugeno neuro-fuzzy sys-

tem and an artificial neural network. The ensemble

combination is optimized by a particle swarm optimi-

zation algorithm. The experimental data were obtained

from the Laboratory of Pharmaceutical Techniques of

the Faculty of Pharmacy in Cluj-Napoca, Romania.

Bootstrap techniques were used to generate more

samples of data since the number of experimental data

was low due to the costs and time durations of experi-

mentations. Experiment results indicate that the pro-

posed methods are efficient.

Keywords Hybrid learning � Ensemble learning �
Evolutionary neural network � Neuro-fuzzy � Drug

design

1 Introduction

Drug research and development is comprehensive,

expensive, time-consuming and full of risk. It is esti-

mated that a drug from concept to market would take

about 12 years and cost more than US$800 million on

an average [12]. Several new technologies have hence

been developed and applied in drug R&D to shorten

the research cycle and to reduce the expenses. The

shift of post-genomics towards a systems approach has

offered an ever-increasing role for artificial intelligence

and robotics. In the postgenomic era, computer-aided

drug design (CADD) has considerably extended its

range of applications, spanning almost all stages in the

drug discovery pipeline, from target identification to

lead discovery, from lead optimization to preclinical or

clinical trials [24, 29]. Laghaee et al. [6] reviewed some

of the latest contributions of AI and robotics to this

end and noted the limitations arising from the current

independent, exploratory way in which specific solu-

tions are being presented for specific problems without

regard to how these could be eventually integrated into

one comprehensible integrated intelligent system.

This article presents an ensemble of three learning

algorithms namely an evolutionary artificial neural

network, Takagi-Sugeno neuro-fuzzy system and an

artificial neural network for modeling the situations

that interferes the process of designing retard drugs

[30, 31]. The ensemble combination is optimized by a

particle swarm optimization algorithm.

A. Abraham (&) � C. Grosan
Faculty of Information Technology,
Mathematics and Electrical Engineering,
Norwegian University of Science and Technology,
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
e-mail: ajith.abraham@ieee.org

C. Grosan
Department of Computer Science, Babes-Bolyai University,
Cluj-Napoca 3400, Romania
e-mail: cgrosan@cs.ubbcluj.ro

Ş. Ţigan
Faculty of Medicine, Department of Biostatistics
and Medical Informatics, University Iuliu Hatieganu,
Cluj-Napoca, Romania
e-mail: stigan@umfcluj.ro

123

Neural Comput & Applic (2007) 16:307–316

DOI 10.1007/s00521-007-0090-1

The problem comes from the pharmaceutical re-

search activity. It refers to a specific class of drugs that

has delayed action called generically retard drugs [23].

The pharmaceutical experimental situation leads to a

mathematical optimization problem. The pharmacist

researcher must take into account several variables of

formulation of the drug such as: the speed of mixing

turbine, the concentration of the binder, addition speed,

the proportion of talc, the proportion of lauril sulfate

Na. We will call these input variables denoted by

Xi; i ¼ 1; n: In the problem considered, there are five

inputs, X1;X2;X3;X4 and X5: With those input vari-

ables, for each combination of the variables, the re-

searcher obtains a variant of drug with certain

characteristics. For each obtained variant, some

parameters are measured called responses that char-

acterize the drug: charging performance, average

diameter of the pill, Carr value, Hausner value, the flow

time and the brittleness. We consider these responses as

outputs and we formalize them by denoting with

Yj; j ¼ 1;m: For the considered problem there are six

outputs denoted by Y1;Y2;Y3;Y4;Y5 and Y6. The costs

of experimentations are high and it is necessary to

devote a long time to determine all responses for each

variant of drug [22]. A snapshot of the experiment data

is illustrated in Table 1.

The aim is to determine a combination of variables

of formulation x1; x2; . . . ; x5ð Þ such that the responses

y1; y2; . . . ; y6ð Þ are optimal. By optimal we mean that

outputs respect some conditions. We must take into

account some restraints for outputs.

1. The first response, output Y1, must be maximized,

so the goal is to obtain a value as close as possible

to 100%.

2. Te second output Y2 must not outrun some values

determined by the fact it is a value representing

tablet’s diameter. So, the requirement is that y2 2

[800 lm, 1,000 lm]. A value around the average

900 lm is suitable.

3. The third output Y3 has also an admissible interval

for its value [1, 20], but we must determine it as

close as possible to 1.

4. The fourth response, output Y4, has a narrower

interval for its values [1, 1.2], but it also has to be

closest to 1.

5. The fifth output Y5, representing a time quantity,

must be as small as possible, but positive.

6. For the last output Y6, the goal is to minimize it,

with positive values, so the 0 value is considered

desirable.

The research objective is to search for the values of

Xii ¼ 1; 5 for which a drug formulation is obtained with

optimal characteristics Yjj ¼ 1; 6: Variables are chosen

by the researcher from a continuous domain and not all

values are accepted. Accepted variation intervals for

inputs, for our problem, are: X1 2 ½0; 50�;X2 2 ½1; 8�;X3

2 ½3; 9�;X4 2 ½0; 5�; and X5 2 ½0; 1�:
Computational techniques have proved their effi-

ciency in dealing with problems from medical and

pharmaceutical domain. Several computational intelli-

gence techniques (such as neural networks, fuzzy sys-

tems, evolutionary algorithms, support vector

machines) have been successfully applied for designing

different types of drugs. A review of neural networks

and genetic algorithms applied for drug design can be

found in [17]. A review of genetic algorithms and

evolutionary programming for drug design can be

found in [1]. Burbidge et al. [21] showed that support

vector machines could be very useful for drug design.

Artificial neural networks were used for drug design by

Tekayama et al. [13], Sun et al. [28] and Hu et al. [16].

Bayesian regularized artificial neural networks were

used by Winkler and Burden [8]. A review on natural

computing techniques for drug discovery is provided by

Table 1 Sample data showing the inputs and outputs

Variables of formulation: inputs Responses: outputs

Exper. No. X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5 Y6

1 20 2 3 5 1 84.0 973.8 4.2 1.043 7.85 1.165
2 40 2 3 0 0 71.9 1150.0 1.6 1.016 8.2 2.264
3 20 8 3 0 1 92.5 1121.4 4.2 1.044 8.83 0.700
4 40 8 3 5 0 88.1 1200.0 3.7 1.038 8.87 1.205
5 20 2 9 5 0 99.2 910.0 5.8 1.061 8.3 1.914
6 40 2 9 0 1 68.2 985.1 4.1 1.043 7.9 2.550
7 20 8 9 0 0 99.1 1010.0 5.3 1.056 9.05 1.160
8 40 8 9 5 1 83.9 925.4 5.5 1.058 8.5 1.265
9 30 5 6 2.5 0.5 85.0 1055.8 3.8 1.036 8.3 1.535
10 30 5 6 2.5 0.5 81.2 1030.0 4.1 1.042 8.37 1.490
11 30 5 6 2.5 0.5 85.0 1060.0 4.1 1.042 8.4 1.535

308 Neural Comput & Applic (2007) 16:307–316

123

Solmajer and Zupan [26]. Computational approaches

that adopt dynamical models were used by Aradi and

Erdi [9].

Esseiva et al. [20] used artificial neural networks

(ANNs) to validate illicit drug classification in the

profiling method used at the University of Lausanne.

Their method established links between samples using

a combination of principal component analysis (PCA)

and calculation of a correlation value between samples.

The application of a neural network was found to be a

useful tool to validate the classification of new drug

seizures in existing chemical classes.

Kiss and Erdi [27] proposed a novel way of com-

putational modeling by integrating compartmental

neural techniques and detailed kinetic description of

pharmacological modulation of transmitter–receptor

interaction is offered as a method to test the electro-

physiological and behavioral effects of potential drugs.

Authors also suggested an inverse method as a method

for controlling a neural system to realize a prescribed

temporal pattern.

Meek et al. [19] reviewed shape signatures, a tool

that is effective and easy to use compared with most

computer aided drug design techniques. Barat et al. [5]

investigated how Monte-Carlo (MC)-based methods

are used in the field of drug delivery, indicating what

aspects of the complex problems of drug dissolution

and design can benefit from this particular approach.

Authors examined the existing Direct MC and sto-

chastic cellular automata modeling efforts used to

simulate dissolution of pharmaceutical compacts or

related phenomena. Stewart et al. [15] proposed the

Drug GuruTM which is a web-based computer software

program for medicinal chemists that applies a set of

transformations, that is, rules, to an input structure.

The transformations correspond to medicinal chemis-

try design rules-of-thumb taken from the historical lore

of drug discovery programs. The output of the program

is a list of target analogs that can be evaluated for

possible future synthesis.

Rest of the paper is organized as follows. In Sect. 2,

the computational intelligence techniques used are

presented followed by experiment results in Sect. 3.

Some conclusions are provided towards the end.

2 Computational intelligence tools (CI)

CI substitutes intensive computation for insight into

how complicated systems work. Artificial neural net-

works, fuzzy inference systems, probabilistic comput-

ing, evolutionary computation etc were all shunned by

classical system and control theorists. CI provides an

excellent framework in unifying them and even by

incorporating other revolutionary methods [7].

2.1 Artificial neural networks

Artificial neural networks (ANNs) were designed to

mimic the characteristics of the biological neurons in

the human brain and nervous system. An artificial

neural network creates a model of neurons and the

connections between them, and trains it to associate

output neurons with input neurons. The network

‘‘learns’’ by adjusting the interconnections (called

weights) between layers. When the network is ade-

quately trained, it is able to generate relevant output

for a set of input data. A valuable property of neural

networks is that of generalization, whereby a trained

neural network is able to provide a correct matching in

the form of output data for a set of previously unseen

input data.

Backpropagation (BP) is one of the most famous

training algorithms for multilayer perceptrons. Basi-

cally, BP is a gradient descent technique to minimize

the error E for a particular training pattern. For

adjusting the weight (wk), in the batched mode variant

the descent is based on the gradient rEðdE=dwkÞ for

the total training set:

DwkðnÞ ¼ �e
dE

dwk
þ aDwkðn� 1Þ ð1Þ

The gradient gives the direction of error E. The

parameters e and a are the learning rate and momen-

tum respectively. A good choice of both the parame-

ters is required for training success and speed of the

ANN.

In the conjugate gradient algorithm (CGA) a search

is performed along conjugate directions, which pro-

duces generally faster convergence than steepest des-

cent directions. A search is made along the conjugate

gradient direction to determine the step size, which will

minimize the performance function along that line. A

line search is performed to determine the optimal

distance to move along the current search direction.

Then the next search direction is determined so that it

is conjugate to previous search direction. The general

procedure for determining the new search direction is

to combine the new steepest descent direction with the

previous search direction. An important feature of the

CGA is that the minimization performed in one step is

not partially undone by the next, as it is the case with

gradient descent methods. An important drawback of

CGA is the requirement of a line search, which is

computationally expensive. Moller [18] introduced the

Neural Comput & Applic (2007) 16:307–316 309

123

scaled conjugate gradient algorithm (SCGA) as a way

of avoiding the complicated line search procedure of

conventional CGA. According to the SCGA, the

Hessian matrix is approximated by

E00ðwkÞpk ¼
E0ðwk þ rkpkÞ � E0ðwkÞ

rk
þ kkpk ð2Þ

where E¢ and E¢ ¢ are the first and second derivative

information of global error function E (wk). The other

terms pk, rk and kk represent the weights, search

direction, parameter controlling the change in weight

for second derivative approximation and parameter for

regulating the indefiniteness of the Hessian. In order to

get a good quadratic approximation of E, a mechanism

to raise and lower kk is needed when the Hessian is

positive definite. Detailed step-by-step description can

be found in the literature [18].

2.2 Evolutionary artificial neural networks

(EANN)

The interest in evolutionary search procedures for

designing ANN architecture has been growing in re-

cent years as they can evolve towards the optimal

architecture without outside interference, thus elimi-

nating the tedious trial and error work of manually

finding an optimal network. The advantage of the

automatic design over the manual design becomes

clearer as the complexity of ANN increases. EANNs

provide a general framework for investigating various

aspects of simulated evolution and learning. We used

the meta-learning evolutionary artificial neural net-

work (MLEANN) framework [3]. Figure 1 illustrates

the general interaction mechanism with the learning

mechanism of the EANN evolving at the highest level

on the slowest time scale. In EANN’s evolution can be

introduced at various levels. At the lowest level, evo-

lution can be introduced into weight training, where

ANN weights are evolved. At the next higher level,

evolution can be introduced into neural network

architecture adaptation, where the architecture (num-

ber of hidden layers, no of hidden neurons and node

transfer functions) is evolved. At the highest level,

evolution can be introduced into the learning mecha-

nism. A general framework of EANNs which includes

the above three levels of evolution is given in Fig. 1.

The efficiency of evolutionary training can be im-

proved significantly by incorporating a local search

procedure into the evolution. Evolutionary algorithms

are used to first locate a good region in the space and

then a local search procedure is used to find a near

optimal solution in this region. It is interesting to con-

sider finding good initial weights as locating a good

region in the space. Defining that the basin of attraction

of a local minimum is composed of all the points, sets of

weights in this case, which can converge to the local

minimum through a local search algorithm, then a

global minimum can easily be found by the local search

algorithm if the evolutionary algorithm can locate any

point, i.e., a set of initial weights, in the basin of

attraction of the global minimum. BP algorithm is used

as the local search algorithm. All the randomly gener-

ated architectures of the initial population are trained

by BP algorithm for a fixed number of epochs. The

learning rate and momentum of the BP algorithm are

adapted according to the problem. The basic algorithm

of the proposed EANN framework is given below.

1. Set t = 0 and randomly generate an initial popu-

lation of neural networks with architectures, node

transfer functions and connection weights assigned

at random.

2. Evaluate fitness of each ANN using BP algorithm

3. Based on fitness value, select parents for repro-

duction

4. Apply mutation to the parents and produce off-

spring (s) for next generation. Refill the population

back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or

number of iterations has reached the required limit.

Architecture of the chromosome is depicted in

Fig. 2. We used a special mutation operator, which

decreases the mutation rate as the algorithm greedily

proceeds in the search space. If the allelic value xi of

the ith gene ranges over the domain ai and bi the

mutated gene xi
¢ is drawn randomly uniformly from the

interval [ai, bi].

x0i ¼
xi þ Dðt; bi � xiÞ; if x ¼ 0

xi þ Dðt; xi � aiÞ; if x ¼ 1

(
ð3Þ

where x represents an unbiased coin flip p(x = 0) =

p(x = 1) = 0.5, and

Evolutionary search of backpropagation learning parameters

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

Fig. 1 Interaction of various evolutionary search mechanisms in
MLEANN

310 Neural Comput & Applic (2007) 16:307–316

123

Dðt; xÞ ¼ x 1� c 1� t
tmaxð Þb

� �
ð4Þ

defines the mutation step, where c is the random

number from the interval [0,1] and t is the current

generation and tmax is the maximum number of gen-

erations. The function D computes a value in the range

[0,x] such that the probability of returning a number

close to zero increases as the algorithm proceeds with

the search. The parameter b determines the impact of

time on the probability distribution D over [0,x]. Large

values of b decrease the likelihood of large mutations

in a small number of generations.

2.3 Neuro-fuzzy computing

Neuro-fuzzy (NF) computing is a popular framework

for solving complex problems [4, 11]. If we have

knowledge expressed in the form of linguistic rules,

we can build a fuzzy inference system (FIS), and if we

have data, or can learn from a simulation (training)

then we can use ANNs. For building a FIS, we have to

specify the fuzzy sets, fuzzy operators and the knowl-

edge base. Similarly for constructing an ANN for an

application the user needs to specify the architecture

and learning algorithm. An analysis reveals that the

drawbacks pertaining to these approaches seem com-

plementary and therefore it is natural to consider

building an integrated system combining the concepts.

While the learning capability is an advantage from the

viewpoint of FIS, the formation of linguistic rule base

will be advantage from the viewpoint of ANN. We

used the adaptive neuro fuzzy inference system (AN-

FIS) implementing a Takagi-Sugeno type FIS. We

modified the ANFIS model to accommodate the mul-

tiple outputs [11]. Figure 3 depicts the six-layered

architecture of multiple output ANFIS and the func-

tionality of each layer is described below. Readers are

advised to consult [11] for technical more details of

ANFIS.

B1

B2

C1

C2

A2

D1

x

x

premise
 parameters

consequent
 parameters

A1

D2

W1

W2

W3

W4

Oi
2Oi

1 Oi
3 Oi

4

/

/

Output 1

Output 2

Oi
5 Oi

6

Σwi

Σwi

Σwifi

Σwifi

fi

fi

y

y

Fig. 3 Architecture of
ANFIS with multiple outputs

LR1 LR2 LR3 LR4 LR8LR6 LR7 LR9LR5

AR1 AR2 AR3 AR4 AR6 7AR5

WT 1 WT 2 WT 3

parameters of backpropagation
algorithm

neural network
 architectures

initial weights

WT 4 WT 5

AR

Fig. 2 Chromosome
representation of MLEANN

Neural Comput & Applic (2007) 16:307–316 311

123

Layer 1. Every node in this layer has a node

function. O1
i ¼ lAi

ðxÞ; for i = 1, 2 or O1
i ¼ lBi�2

ðyÞ;
for i = 3, 4, Oi

1 is the membership grade of a fuzzy

set Að¼ A1;A2;B1 or B2) and it specifies the degree

to which the given input x (or y) satisfies the

quantifier A. Usually the node function can be any

parameterized function. A Gaussian membership

function is specified by two parameters c (member-

ship function center) and r (membership function

width). Gaussian ðx; c; rÞ ¼ e�
1
2

�
x�c
r

�2

: Parameters in

this layer are referred to premise parameters.

Layer 2. Every node in this layer multiplies the

incoming signals and sends the product out. Each

node output represents the firing strength of a rule.

O2
i ¼ wi ¼ lAi

ðxÞ � lBi
ðyÞ; i ¼ 1; 2; . . .; In general

any T-norm operator that performs fuzzy ‘‘AND’’

can be used as the node function in this layer.

Layer 3. The rule consequent parameters are deter-

mined in this layer. O3
i ¼ fi ¼ xpi þ yqi þ rI ; where

pi; qi; rif g are the rule consequent parameters.

Layer 4. Every node i in this layer is with a node

function O4
i ¼

P
wif i ¼

P
wiðpixþ qiyþ riÞ; where

wi is the output of layer 2

Layer 5. Every node in this layer aggregates all the

firing strengths of rules O5
i ¼

P
i

wi:

Layer 6. Every ith node in this layer calculates the

individual outputs.

O6
i ¼ Output ¼

P
wif iP

i

wi
; i ¼ 1; 2 . . . :

ANFIS makes use of a mixture of backpropagation

to learn the premise parameters and least mean square

estimation to determine the consequent parameters. A

step in the learning procedure has two parts: In the first

part the input patterns are propagated, and the optimal

conclusion parameters are estimated by an iterative

least mean square procedure, while the antecedent

parameters (membership functions) are assumed to be

fixed for the current cycle through the training set. In

the second part the patterns are propagated again, and

in this epoch, backpropagation is used to modify the

antecedent parameters, while the conclusion parame-

ters remain fixed. This procedure is then iterated.

2.4 Ensemble of intelligent paradigms using

particle swarm optimization

Ensemble Learning combines multiple learned models

under the assumption that the combined model would

perform better than a direct stand alone approach. The

decisions of multiple hypotheses are combined in

ensemble learning to produce more accurate results.

The problem becomes more complicated when we

have to optimize several performance (error) mea-

sures. For the drug design problem, the task is to

optimize the root mean squared error (RMSE) and

correlation coefficient (CC).

The first step is to carefully construct the different

models (neural network, neuro-fuzzy model and evo-

lutionary neural network) to achieve the best gener-

alization performance. Test data is then passed through

these individual models and the corresponding outputs

are recorded. Suppose the output values predicted by

ANN, EANN and NF are an, bn and cn, respectively,

and the corresponding desired value is xn. Our task is

to combine an, bn and cn so as to get the best output

value (xn) that maximizes the CC and minimizes the

RMSE values.

Particle swarm optimization (PSO) is a population

based stochastic optimization technique developed in-

spired by social behavior of bird flocking or fish

schooling. Initially, a population of particles is ran-

domly generated [14]. Each particle represents a po-

tential solution and has a position represented by a

position vector xi. A swarm of particles moves through

the problem space, with the moving velocity of each

particle represented by a velocity vector vi. At each

time step, a function fi—representing a quality mea-

sure—is calculated by using xi as input. Each particle

keeps track of its own best position, which is associated

with the best fitness it has achieved so far in a vector pi.

Furthermore, the best position among all the particles

obtained so far in the population is kept track of as pg.

In addition to this global version, another version of

PSO keeps track of the best position among all the

topological neighbors of a particle. At each time step t,

by using the individual best position, pi (t), and the

global best position, pg (t), a new velocity for particle i

is updated by

viðtþ1Þ¼ viðtÞþ c1/1ðpiðtÞ�xiðtÞÞþ c2/2ðpgðtÞ�xiðtÞÞ
ð5Þ

where c1 and c2 are positive constants and u 1 and u

2 are uniformly distributed random numbers in [0,1].

The term vi is limited to the range of ± Vmax (if the

velocity violates this limit, it is set to its proper

limit). Changing velocity this way enables the particle

i to search around both its individual best position,

pi, and global best position, pg. Based on the updated

velocities, each particle changes its position according

to:

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð6Þ

312 Neural Comput & Applic (2007) 16:307–316

123

Using a PSO algorithm a search for the optimal values

for the linear parameters m, n, and o are performed

such that

mþnþo¼ 1 and an�mþbn�nþ cn�o� xn ð7Þ

so as to minimize RMSE and maximizes the CC. The

ensemble model is illustrated in Fig. 4. The objective

function is modeled as

MinimizeðZÞ ¼ RMSEþ 1� CC ð8Þ

3 Experiment setup and results

3.1 Data preparation

Very often, for pharmaceutical drug design problems

the relation between inputs and outputs is unknown

and the data are difficult to obtain due to costs and

time constraints. Sometimes the sample data is too

poor and the regression functions are not suitable to

describe the association between variables. We resort,

in this case, to a re-sampling method that allow us to

manage uncertainty. The aim is to improve our sample

of data with pseudo data and to evaluate some statis-

tical parameters. We used a bootstrap method of re-

sampling data [2, 10, 25]. We grouped each input var-

iable of formulation Xi, i ¼ 1; 5 with each output

Yj; j ¼ 1; 6: Finally, among the bootstrap simulated sets

of Xi variables we select a combination of inputs, a set

of values xi; i ¼ 1; 5; that correspond to best situated

values of Yj.

The experiment system consists of two stages:

building and modeling the different models described

in Sect. 2 and performance evaluation. Experiments

were repeated three times and the worst errors are

reported. The test data is passed through the trained

network to evaluate the learning efficiency of the

considered models.

3.2 Simulation of models

Our preliminary experiments helped us to formulate a

feedforward neural network with 1 input layer, 1

hidden layer and an output layer [5–10–6]. Input layer

consists of five neurons corresponding to the input

variables. The hidden layer consists of 10 neurons using

tanh-sigmoidal activation function. Training was ter-

minated after 2,000 epochs and we achieved a RMSE

of 0.0362. Figure 5 shows the convergence of SCGA

during the 2,000 epochs training.

We have applied the MLEANN algorithm for drug

design. For performance comparison, we used the same

set of training and test data that were used for exper-

imentations with conventional design of neural net-

Fig. 5 Convergence of SCGA training

EnEnsembe of
intelligent paradigms

Neural network

Evolutionary neural network

Neuro-fuzzy system

Drug
output

parameters

Drug
input

parameters

m

n

o

an

bn

cn

Fig. 4 Architecture of the
ensemble model

Table 2 Parameters used for evolutionary design of artificial
neural networks

Population size 30
Maximum no of

generations
25

Number of hidden nodes 5–9 hidden nodes
Activation functions tanh (T), logistic (L), sigmoidal (S),

tanh-sigmoidal (T*),
log-sigmoidal (L*)

Output neuron Linear
Training epochs 500
Initialization of weights ±0.1
Ranked based selection 0.50
Learning rate 0.15–0.01
Momentum 0.15–0.01
Elitism 5%
Initial mutation rate 0.70

Neural Comput & Applic (2007) 16:307–316 313

123

works and the neuro-fuzzy system. Fitness value is

calculated based on the RMSE achieved on the test set.

We have considered the best-evolved neural network

as the best individual of the last generation. All the

genotypes were represented using real coding and the

initial populations were randomly generated based on

the parameters shown in Table 2. MLEANN learning

(convergence) showing the best fitness values is illus-

trated in Fig. 6. Compared to a direct neural network

approach, the MLEANN approach resulted in better

performance measures with only five hidden neurons.

For training the neuro-fuzzy (NF) model, we used

two Gaussian membership functions for each input

variables and 64 rules were learned using the hybrid

training method. Training was terminated after 30

epochs. Figures 7, 8, 9, 10 depict some sample input–

output surface for the developed fuzzy if–then rule

base.

Fig. 10 Learned surface between X1, X5 and Y1

Fig. 6 Convergence of
MLEANN algorithm

Fig. 7 Learned surface between X1, X2 and Y1

Fig. 8 Learned surface between X1, X3 and Y1

Fig. 9 Learned surface between X1, X4 and Y1

314 Neural Comput & Applic (2007) 16:307–316

123

Table 3 summarizes the performances of MLE-

ANN, neuro-fuzzy system and neural network for the

test data showing the individual RMSE and CC for

outputs Y1;Y2;Y3;Y4;Y5 and Y6. For the ensemble

learning a swarm size of 20 was used and c1 and c2 were

set = 1.49. Empirical results using the ensemble

method are depicted in Table 3.

4 Conclusions

In this paper, we have proposed an ensemble of

three learning algorithms for drug design. Test re-

sults reveal that the proposed ensemble model is

capable of modeling all the outputs accurately when

compared to the individual approaches. Compared to

artificial neural network, neuro-fuzzy system per-

formed better in terms of RMSE and correlation

coefficient. Another important advantage of neuro-

fuzzy system is the interpretability of the results

using if–then rules. The proposed intelligent system

might be useful for drug design researchers, compa-

nies engaged in drug business etc. Performance could

have been improved by providing more training data.

The most important achievement of this result is that

it gives the researcher a new starting point of

experimentation instead of doing another 20–30

experiments and to arrive at the same conclusion as

the ensemble model recommends. Our intention is to

create some flexible and adaptable tools for modeling

and simulation using numerical and statistical tools,

all this with computer support and distributed on

Internet.

Acknowledgments Authors would also like to thank the col-
leagues of the Department of Maxillofacial Surgery, University
of Medicine and Pharmacy, Iuliu Hatieganu Cluj-Napoca, for the
initial contributions of this research

References

1. Parrill AL (1996) Evolutionary and genetic methods in drug
design. Drug Discov Today 1(12):514–521

2. Zoubir AM, Iskander DR (1998) Bootstrap MATLAB
Toolbox. Software reference manual

3. Abraham A (2004) Meta-learning evolutionary artificial
neural networks. Neurocomp J 56c:1–38

4. Abraham A (2001) Neuro-fuzzy systems: state-of-the-art
modeling techniques, connectionist models of neurons,
learning processes, and artificial intelligence. In: Mira J,
Prieto A (eds.) Lecture notes in computer science. Springer,
Berlin, LNCS 2084, pp 269–276

5. Barat A, Ruskin HJ, Crane M (2006) Probabilistic models
for drug dissolution. Part 1. Review of Monte Carlo and
stochastic cellular automata approaches. Simul Model Pract
Theory 14(7):843–856

6. Laghaee A, Malcolm C, Hallam J, Ghazal P (2005) Artificial
intelligence and robotics in high throughput post-genomics.
Drug Discov Today 10(18):1253–1259

7. Carlsson C, Fullér R (1998) Multiobjective optimization with
linguistic variables. In: Proceedings of the sixth European
congress on intelligent techniques and soft computing, Aa-
chen, September 7–10, 1998, Verlag Mainz

8. Winkler DA, Burden FR (2004) Bayesian neural nets for
modeling in drug discovery. Drug Discov Today: BIOSILI-
CO 2(3):104–111

9. Aradi I, Erdi P (2006) Computational neuropharmacology:
dynamical approaches in drug discovery. Trends Pharmacol
Sci 27(5):240–243

10. Carpenter J, Goldstein H, Rasbash J (1999) A non-para-
metric bootstrap for multilevel models. Multilevel Model
Newsl 11:2–5

11. Jang SR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft
computing: a computational approach to learning and ma-
chine intelligence. Prentice Hall, Englewood Cliffs

12. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of
innovation: new estimates of drug development costs.
J Health Econ 22:151–185

13. Takayama K, Fujikawa M, Obata Y, Morishita M (2003)
Neural network based optimization of drug formulations.
Adv Drug Deliv Rev 55(9):1217–1231

14. Kennedy J, Eberhart RC (1995) Particle swarm optimization.
In: Proceedings of the IEEE international conference on
neural networks, Vol. IV, pp 1942–1948. IEEE service cen-
ter, Piscataway, NJ

Table 3 Test results and performance comparison of drug design system

Output Y1 Y2 Y3 Y4 Y5 Y6

Ensemble approach
RMSE 0.00924 0.01017 0.00821 0.00891 0.00792 0.00834
CC 0.996 0.994 0.994 0.993 0.993 0.997

Evolutionary artificial neural networks
RMSE 0.011 0.019 0.0123 0.0129 0.0132 0.0101
CC 0.990 0.993 0.994 0.990 0.989 0.998

Artificial neural networks
RMSE 0.0487 0.039 0.043 0.040 0.038 0.039
CC 0.979 0.968 0.967 0.956 0.966 0.975

MIMO neuro-fuzzy system
RMSE 0.0187 0.0213 0.0134 0.0145 0.0190 0.0132
CC 0.992 0.989 0.993 0.987 0.991 0.990

Neural Comput & Applic (2007) 16:307–316 315

123

15. Stewart KD, Shiroda M, James CA (2006) Drug Guru: a
computer software program for drug design using medicinal
chemistry rules. Bioorg Med Chem 14(20):7011–7022

16. Hu L, Chen GH, Chau RMW (2006) A neural networks-
based drug discovery approach and its application for de-
signing aldose reductase inhibitors. J Mol Graph Model
24(4):244–253

17. Teroth L, Gasteiger J (2001) Neural networks and genetic
algorithms in drug design. Drug Discov Today 6(2):102–108

18. Moller AF (1993) A scaled conjugate gradient algorithm for
fast supervised learning. Neural Netw 6:525–533

19. Meek PJ, Liu Z, Tian L, Wang CY, Welsh WJ, Zauhar RJ
(2006) Shape signatures: speeding up computer aided drug
discovery. Drug Discov Today 11(19–20):895–904

20. Esseiva P, Anglada F, Dujourdy L, Taroni F, Margot P,
Pasquier ED, Dawson M, Roux C, Doble P (2005) Chemical
profiling and classification of illicit heroin by principal com-
ponent analysis, calculation of inter sample correlation and
artificial neural networks. Talanta 67(2):360–367

21. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug
design by machine learning: support vector machines for
pharmaceutical data analysis. Comput Chem 26(1):5–14

22. Câmpean R, Prodan A (2003) Biomatematică – aplicatii ı̂n
Excel, Editura Medicală Universitară ‘‘Iuliu Hatieganu’’,
Cluj-Napoca, ISBN: 973-693-016-5

23. Câmpean R, Prodan A (2003) A rating model applied for
designing drugs. In: Proceedings of the 12-th IASTED in-
ternational conference on applied simulation and modelling,
Marbella, Spain, pp 557–561, ACTA press, ISBN: 0-88986-
384-9, ISSN: 1021–8181

24. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of
artificial neural network (ANN) modeling and its application
in pharmaceutical research. J Pharm Biomed Anal
22(5):717–727

25. Hesterberg T, Monaghan S, Moore DS, Clipson A, Epstein
R (2003) Bootstrap methods and permutation tests. W. H.
Freeman and Company, New York

25. Solmajer T, Zupan J (2004) Optimization algorithms and
natural computing in drug discovery. Drug Discov Today:
Technol 1(3):247–252

27. Kiss T, Érdi P (2006) From electric patterns to drugs: per-
spectives of computational neuroscience in drug design.
Biosystems 86(1–3):46–52

28. Sun Y, Peng Y, Chen Y, Shukla AJ (2003) Application of
artificial neural networks in the design of controlled release
drug delivery systems. Adv Drug Deliv Rev 55(9):1201–1215

29. Tang Y, Zhu W, Chen K, Jiang H (2006) New technologies
in computer-aided drug design: toward target identification
and new chemical entity discovery. Drug Discov Today:
Technol 3(3):307–313

30. Grosan C, Abraham A, Tigan S (2006) Engineering drug
design using a multi-input multi-output neuro-fuzzy system,
8th International symposium on symbolic and numeric al-
gorithms for scientific computing (SYNASC’06), Timisoara,
Romania, IEEE CS Press, pp 365–371

31. Grosan C, Abraham A, Tigan S, Chang T-G, Kim DH (2006)
Evolving neural networks for pharmaceutical research, In-
ternational conference on hybrid information technology
(ICHIT’06), IEEE Press, Korea, pp 13–19

316 Neural Comput & Applic (2007) 16:307–316

123

	Ensemble of hybrid neural network learning approaches �for designing pharmaceutical drugs
	Abstract
	Introduction
	Computational intelligence tools (CI)
	Artificial neural networks
	Evolutionary artificial neural networks (EANN)
	Neuro-fuzzy computing
	Ensemble of intelligent paradigms using particle swarm optimization

	Experiment setup and results
	Data preparation
	Simulation of models

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

