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Abstract—An efficient management of the resources in Grid
computing crucially depends on the efficient mapping of
the jobs to resources according to the user’s requirements.
Grid resources scheduling has become a challenge in the
computational Grid. The mapping of the jobs to appropriate
resources for execution of the application in Grid computing
is an NP-Complete problem. In this paper, hyper-heuristic
based resource scheduling algorithm is designed to effectively
schedule the jobs on available resources in a Grid environment.
The performance of the proposed algorithm is evaluated using
the GridSim toolkit. Empirical results illustrate that our
algorithm outperformed the existing algorithm by minimizing
cost and makespan of user’s submitted applications.

Keywords-Resource Scheduling; Heuristic Methods; Grid
Computing.

I. INTRODUCTION

Grid computing is coordinated resource sharing and prob-

lem solving in dynamic, multi-institutional virtual organi-

zations [1]. The ultimate goal of Grid computing is to

provide the computing facility to users like power Grid

without knowing the detailed characteristics of the source.

The base of Grid computing is a resource. To manage

resources in Grid environment is a challenging task. So Grid

resource management has become one of the most important

areas of Grid computing. Grid resource management can

be defined as a process of identifying requirements of the

resources, matching resources to the applications, allocating

those resources and finally scheduling and monitoring the

Grid resources over time in order to run Grid applications

as efficiently as possible. Grid resource management sys-

tem is required to perform resource management decisions

which include resource provisioning and scheduling, while

maximizing the Quality of Service (QoS) metrics delivered

to the clients. Grid scheduling is the main key challenge

of the Grid resource management system because in this,

application should be mapped to the appropriate resource

while fulfilling the user’s requirements.
Grid scheduling is defined as the process of making

scheduling decisions involving allocating jobs to resources

over multiple administrative domains [2]. The mapping of

jobs to appropriate resources for execution of application

in Grid computing is an NP-Complete problem [7]. NP-

complete problems are often solved using heuristic meth-

ods. Heuristic approaches can be easily applied to Grid

scheduling problems because Grid scheduling has various

important issues such as heterogeneity of resources, dynamic

and autonomous nature of Grid resources and finally the

resource providers and resource consumers have different

policies for execution of their applications. Hyper-heuristic

can be seen as a high-level methodology, which when given

a particular problem instance or a class of instances and

a number of low-level heuristics, automatically produced

an adequate combination of the provided components to

effectively solve the given problems [3].

The paper is structured as follows: Section 2 discusses

related work. In section 3, a description of Grid resource

scheduling model has been presented. In section 4, we

present Tabu search based hyper-heuristic with great deluge

resource scheduling algorithm for Grid environment. Section

5 presents the experimental setup used for the performance

evaluation and results. We provide the conclusion in section

6.

II. RELATED WORKS

Many traditional Grid scheduling algorithms have been

proposed that have some features in common, that are

performed in multiple steps to solve the problem of match-

ing jobs/applications needs with resource availability while

providing QoS. To find the best pair of jobs and resources

is an NP-complete problem.

Abraham et al. used nature’s heuristics namely Ge-

netic Algorithm (GA), Simulated Annealing (SA) and Tabu

Search (TS) for scheduling of jobs on computational Grids.

Authors illustrated that GA performs better than TS and

SA for scheduling of the jobs to exact resources but hybrid

heuristic algorithms perform better than GA approach as it

minimizes the time required for scheduling the job [5]. A

fuzzy reputation based ant algorithm for Grid scheduling

has been designed in[14]. Authors used fuzzy logic trust

model for trust value aggregation through fuzzification. Chen

et al. have used universal utility optimization function to

design economic Grid resource scheduling algorithm. They

considered time and cost parameters to design resource

scheduling algorithm [15]. Authors used meta-heuristic to

design scheduling algorithm instead of hyper-heuristic.
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In [16], a QoS guided min-min heuristic is presented

which can guarantee the QoS requirements of particular

tasks and minimize the makespan at the same time. They

have considered a single objective problem. Carretero et al.

used GA for job scheduling in large-scale Grid applications.

They have done several variations for GA operators in

order to identify which worked best for the problem [17].

Gonzalez [6] et al. used ad-hoc (immediate and batch mode)

scheduling methods to design hyper-heuristic approach for

scheduling of jobs on the Grid nodes. A scheduling model

for resource scheduling has been designed using heuristic

methods by Bhanu et al. [4]. They have used Longest Job

Faster Resource (LJFR) heuristic and Shortest Job Faster

Resource (SJFR) heuristic method for resource scheduling.

They did not consider the cost and makespan for independent

job scheduling in the Grid environment. Our proposed

implementation of hyper-heuristic based resource scheduling

algorithm minimizes the cost and makespan simultaneously.

A. Grid Scheduling: Problem Formulation

To find the best resource to a corresponding job is a

tedious task and the problem of finding the best resource

- job pair according to user’s application requirement is a

combinatorial optimization problem.

In order to formalize the problem instance, we have

used the Brun et al. [7] computational model. Under the

ETC simulation model for problem formulation, we have

considered the following constraints: 1) Each job to be

scheduled for application’s execution has a unique id. 2)

Jobs are independent and indivisible and 3) Arrival of jobs

for execution of application is random and jobs are placed

in the queue of unscheduled jobs. The problem of finding

the best resource - job pair according to user’s application

requirement is a combinatorial optimization problem. So, it

is required to mathematically formalize to get an optimal

solution. To consider this problem, we have taken a set of

independent jobs {j1, j2, j3, ..........jm} to map on a set of

heterogenous and dynamic resources {r1, r2, r3..........rn}.

R = {rk|1 ≤ k ≤ n} is the collection of resources and n

is the total number of resources. J = {ji|1 ≤ i ≤ m} is the

collection of jobs and m is the total number of jobs. The

estimated time to compute value of each application/ job on

each resource is assumed to be given by the user’s supplied

information, experimental data, job profiling and analytical

benchmarking.

We have used a weighted sum function of makespan and

cost to deal with their simultaneous optimization. We have

transformed a bi-objective problem into mono-objective by

using the weighed function.

B. Objective Function

In Grid scheduling, the main goal of the providers is to

minimize the makespan where as the goal of the user is to

minimize the cost for Grid application. Fitness value is thus

calculated as:

FitnessFunction = θcost+ δmakespan
cost = Min(c(rk, ji)) for 1 ≤ k ≤ n, 1 ≤ i ≤ m
makespan= Min (Fji ) for ji ∈ J

where 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize

components of the fitness function.

Cost(rk, ji) is the cost of job ji which executes on

resource rk. Makespan is the finishing time Fj of latest job

and can be expressed as Expected Time to Compute (ETC)

job ji on resource rk . For calculating makespan, it is useful

to define the completion time of a machine. Completion

time indicates the time in which the machine/resource can

complete the execution of all the previous assigned jobs in

addition to the execution time of job ji on resource rk, as

defined below.

completion(rk) = avail timerk ± ETC(ji, rk)
We can use the value of completion time to compute

the makespan. This mapping is done with an objective of

minimizing cost and makespan simultaneously.

III. TABU SEARCH BASED HYPER-HEURISTIC WITH

GREAT DELUGE RESOURCE SCHEDULING ALGORITHM

A hyper-heuristic operates at a higher-level of abstraction.

It selects a low-level heuristic that should be applied at

any given time, depending upon the characteristics of the

region of solution space currently under exploration [3].

The work presented in this paper is based on the four

low-level heuristics as discussed in [10][13]. The process

of hyper-heuristic is divided into two parts namely heuris-

tic selection and heuristic acceptance. Heuristics selection

method is very simple to select the low-level heuristics.

Heuristics acceptance can be divided into deterministic and

non-deterministic. In the proposed algorithm, we have used

tabu search [8] as heuristic selection method and great

deluge [9] as heuristic acceptance. Tabu search with great

deluge based hyper-heuristic algorithm for resource schedul-

ing deals with feasible solution for scheduling of resources

in Grid environment. For job execution of independent job,

best heuristic is found and then the procedure is repeated

until all user’s jobs have been scheduled.

A. Pseudo code of Algorithm

In this Section, we present the pseudo code of hyper-

heuristic based algorithm for resource scheduling in the Grid

environment. Low-level heuristics can be simple or complex

and can be implemented as follows : 1) First of all, select

the job to be scheduled. The heuristic selects a job from the

list of unscheduled jobs and schedule it to the best available

resource that is filtered from the resource provisioning list. 2)

Move job ji from its current resource to some other resource.

3) Randomly select a job and swap it with some other job.

4) Finally, remove a randomly selected job from the job
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Algorithm 1: Tabu search based Hyper-heuristic

with Great Deluge Resource Scheduling Algorithm

Data: number of jobs and number of available

resource.

Result: mapping of the each job to the resources.

begin
initialize Resource list[Number of Resources]

initialize joblist[Number of Jobs]

Input n= number of heuristics

Initialize a random feasible solution

joblist= get job to schedule()

resourcelist= get available resources()

select the best heuristic from non tabu list

initialize the heuristic list h[h1,h2,h3...hn]

boundary= Fcurrent form = 0 → m = kdo
i= selectheuristic(hc)
if Fi < Fcurrent then

Applyhc

Fcurrent = Fi

addhc into the tabu list

untill terminating condition satisfied

Repeat for Heuristic

while there are unscheduled jobs in the queue
do

for every resource is in resource list do
get the next job from queue

compute the fitness to schedule the job

on the current resource

schedule the job on the resource on the

basis of fitness

Repeat the every step until all jobs are allocated

pool already scheduled. This is the only heuristic which will

move the search into an infeasible region because any job

may be unscheduled. We make sure that the search can move

back into its feasible region by un-scheduling the job that

has other valid resources so that it can move into the next

iteration.

• Job list and a random feasible solution is initialized.

Then, resource list is obtained from resource provision-

ing unit after provisioning of user’s requests [11].

• The task to choose best heuristic from low-level heuris-

tics is started.

• The value of boundary is set with current feasible

solution for accepting the best heuristic from non tabu

list. It calls each heuristic which is not tabu.

• Bruke et al. [9] acceptance criteria of great deluge

has been used in this algorithm. After the selection

of heuristic, it’s solution is compared with current

solution.

• If the solution is less than the boundary value, then the

heuristic is accepted for resource scheduling.

• After heuristic selection, heuristic will assign each job

to resource from the queue of unscheduled jobs.

• Resource scheduling is performed till there are no

unscheduled jobs in the queue.

IV. PERFORMANCE EVALUATION AND DISCUSSION

GridSim toolkit provides facilities of modeling, simulation

of resources and network connectivity with different capabil-

ities, configurations and domain [12]. Resources capability

can be defined in the form of Millions Instructions Per

Second (MIPS) as per Standard Performance Evaluation

Corporation (SPEC) benchmark. Multiple user entities can

submit tasks for execution simultaneously.

For experimental results, heterogeneous type of resources

are considered. In general, each resource may contain a

different number of machines, and each machine may have

one or more than one Processing Elements (PE). In our

results, we have assumed that each application/task which is

submitted to the Grid may require varying processing time

and input size and such type of task is defined in the form

of Gridlets. Table 1 shows the characteristics of resources

and Gridlets, that we have used for all our experiments. For

our evaluation, we have derived a suitable workload from

real machine traces. These traces have been obtained from

Grid workload archive website 1. 2000 user applications are

generated according to the Lublin workload model [19]. The

model specifies the arrival time, number of CPUs required,

and execution time μ of each application. This model is

derived from existing workload traces for rigid jobs and

incorporates correlations between job runtimes, job sizes,

and daytime cycles in job inter-arrival times. Using this

generated workload, we have generated ETC matrix which

is computed as the ratio of workload and computing capacity

of machine vectors. No of jobs * no of resources gives

the size of the matrix and its components are defined as

ETC(ji, rk). Rows of the ETC matrix demonstrate the

estimated execution time for a job on each resource and

the columns demonstrate the estimated execution time for a

particular resource. ETC(ji, rk) is the expected execution

time of job ji and the resource rk. Each job can execute

on each resource, and the estimated execution times of each

job on each resource is known.

ETC matrices are classified into consistent and incon-

sistent matrices. Consistent matrix means that whenever a

resource rk executes the job ji faster in comparison to

rl then the resource rk executes all the jobs faster than

rl. Inconsistent matrix means that rq may be faster in job

execution than rs for some cases and slower for others [7].

1More information about the real trace used can be obtained from the
Grid Workload Archive at http://gwa.ewi.tudelft.nl/pmwiki/
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Table I
SCHEDULING PARAMETERS AND THEIR VALUES

Parameter Value
Number of Resource 70-150
Number of Gridlets 2000
Length of Job 1000 - 6000
Bandwidth 3000 or 7000 B/S
Number of machine per resource 1
Number of PEs per machine 1-5
PE ratings 10-60 MIPS
Cost per job 3 G−5G
File size 100 + (10-30%)

MB
Job Output size 250 + (10-

40%)MB

A. Performance Evaluation criteria

We selected two matrices, namely makespan and cost

for evaluating the performance. The former indicates the

execution time where as the latter indicates the cost per unit

resources that are consumed by the users for the execution

of their applications. The cost is measured in Grid dollars

(G$).

B. Results

To validate our algorithm, 2000 jobs/applications and 70

- 150 resources are considered. We used an average of

fifty runs in order to guarantee statistical correctness. We

present the simulation result using Brun et al. simulation

model with the Gridsim discrete event simulation so as to

test the performance of hyper-heuristic based algorithm. To

simulate the Grid environment, execution time for every job

on resource is obtained from the Expected Time to Compute

(ETC) matrix.

Test case 1: Performance for the High & Low-
Heterogeneous Case

Figure 1. Comparison result for inconsistent and low machine heterogene-
ity

In this case, we evaluate the makespan and cost of the Grid

applications in two different scenarios as (i) Same number

of applications/jobs are sent and (ii) Different number of

applications are sent. The pricing of resources may or may

not be related to CPU speed. Thus, minimization of both

makespan and cost of an application may conflict with each

Figure 2. Comparison result for consistent and low machine heterogeneity

Figure 3. Comparison result for inconsistent and low machine heterogene-
ity

other depending on the price of the resources. Fig 1 - 8

show the makespan and cost of Tabu search based hyper-

heuristic with great deluge resource scheduling vs Genetic

Algorithm (GA), Simulated Annealing (SA) and GA-TS

algorithms respectively. The most important characteristic

applicable to real world scenarios is that how each algorithm

responds to different heterogeneity of jobs and resources.

A comparison of different makespans for both high and

low resource/machine heterogeneity has been shown. In this

analysis, high resource heterogeneity is simulated by each

resource having a random number of PEs between 7 and 30.

The low resource heterogeneity is simulated by resources

having the number of PEs between 1 and 5. By analyzing

the results in these figures, we can conclude that when

Figure 4. Comparison result for consistent and low machine heterogeneity
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the resource heterogeneity is low, tabu search based hyper-

heuristic with great deluge resource scheduling algorithm

outperforms all the other approaches.

Figure 5. Comparison result for inconsistent and high machine hetero-
geneity

Figure 6. Comparison result for consistent and high machine heterogeneity

As discussed earlier, Gridlets which are sent to the Grid

are supposed to be independent of each other. The char-

acteristics of Gridlets are sent to the Grid to compare the

makespan of different algorithms. The results show that in

case of GA, SA and GA-TS algorithms, if we send the same

number of applications/jobs to the Grid, makespan and cost

increases whereas in the case of Tabu search based hyper-

heuristic with great deluge resource scheduling algorithm

both makespan and cost decreases.

Figure 7. Comparison result for inconsistent and high machine hetero-
geneity

Figure 8. Comparison result for consistent and high machine heterogeneity

Figure 9. Effect of the number of application on the makespan

Testcase 2: Effect of the Number of Jobs
We have also performed experiments to determine the

effect of increasing the number of applications on cost and

makespan. We have around hundred-node simulated Grid

with two thousand jobs being sent to the Grid. From the

experimental results shown in Figure 9, we can conclude

that the time taken to execute an application reduces by

using Tabu search based hyper-heuristic with great deluge

resource scheduling algorithm. Figure 10 shows that cost per

application increases as the number of submitted application

increases. The existing algorithm based application’s execu-

tion resulted in a schedule which is expensive in comparison

to Tabu search based hyper-heuristic with great deluge

resource scheduling algorithm as the number of applications

increases.

Figure 10. Effect of the number of application on the cost
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From the above results, we observed that application exe-

cution using the Tabu search based hyper-heuristic with great

deluge resource scheduling algorithm provides the following

advantages: The makespan of the proposed algorithm is

lower than the GA,SA and GA-TS. The time variation in

execution of applications is about 5-10 %, compared to

the existing algorithm of 50- 60% using the same set of

applications. This time variation is quite significant. It also

maintains cost for user’s application execution.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a novel hyper-heuristic based

scheduling algorithm for scheduling of jobs in Grid envi-

ronment so as to minimize the cost and time by minimizing

the makespan. Empirical results show that Tabu search

based hyper-heuristic with great deluge resource scheduling

algorithm outperforms in comparison to hybrid heuristics in

all cases. The proposed algorithm not only minimizes the

time and cost but it also minimizes the makespan and cost.

In future, we would like to incorporate trust of node and

reliability of the node /resources at the time scheduling of

resources.
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