
 1

Differential Evolution Using a Neighborhood-based

Mutation Operator

Swagatam Das1, Ajith Abraham2, Uday K. Chakraborty3, and Amit Konar1

1
Department of Electronics and Telecommunication Engineering, Jadavpur University,

 Kolkata 700032, India
2Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and

Technology, Norway
3Dept. of Math & Comp. Sc. University of Missouri,

St. Louis, MO 63121, USA
swagatamdas19@yahoo.co.in, ajith.abraham@ieee.org, chakrabortyu@umsl.edu, konaramit@yahhoo.co.in

Abstract- Differential Evolution (DE) is well known as a simple and efficient scheme for global

optimization over continuous spaces. It has reportedly outperformed a few Evolutionary

Algorithms (EAs) and other search heuristics like the Particle Swarm Optimization (PSO) when

tested over both benchmark and real-world problems. DE, however, is not completely free from

the problems of slow and/or premature convergence. This article describes a family of improved

variants of the DE/target-to-best/1/bin scheme, which utilize the concept of the neighborhood of

each population member. The idea of small neighborhoods, defined over the index-graph of

parameter vectors, draws inspiration from the community of the PSO algorithms. The proposed

schemes balance the exploration and exploitation abilities of DE without imposing serious

additional burdens in terms of function evaluations. They are shown to be statistically

significantly better than or at least comparable to several existing DE variants as well as a few

other significant evolutionary computing techniques over a test-suite of 24 benchmark functions.

The paper also investigates the applications of the new DE-variants to two real-life problems

concerning parameter estimation for frequency modulated sound waves and spread spectrum

radar poly-phase code design.

Keywords: Differential evolution, Evolutionary algorithms, Numerical optimization, Particle

swarm optimization, Meta-heuristics.

1 Introduction

Differential Evolution (DE), proposed by Storn and Price [1-3], is a simple yet powerful algorithm for
real parameter optimization. Recently, the DE algorithm has become quite popular in the machine
intelligence and cybernetics communities. It has successfully been applied to diverse domains of
science and engineering, such as mechanical engineering design [4, 5], signal processing [6], chemical
engineering [7, 8], machine intelligence, and pattern recognition [9, 10]. It has been shown to perform
better than the Genetic Algorithm (GA) [11] or the Particle Swarm Optimization (PSO) [12] over
several numerical benchmarks [13]. Many of the most recent developments in DE algorithm design
and applications can be found in [14]. Like other evolutionary algorithms, two fundamental processes
drive the evolution of a DE population: the variation process, which enables exploring different
regions of the search space and the selection process, which ensures the exploitation of previous
knowledge about the fitness landscape.

Practical experience, however, shows that DE may occasionally stop proceeding toward the global
optimum even though the population has not converged to a local optimum or any other point [15].
Occasionally, even new individuals may enter the population, but the algorithm does not progress by
finding any better solutions. This situation is usually referred to as stagnation. DE also suffers from the

 2

problem of premature convergence, where the population converges to some local optima of a multi-
modal objective function, losing its diversity. The probability of stagnation depends on how many
different potential trial solutions are available and also on their capability to enter into the population
of the subsequent generations [15]. Like other evolutionary computing algorithms, the performance of
DE deteriorates with the growth of the dimensionality of the search space as well. There exists a good
volume of works (a review of which can be found in Section 3), attempting to improve the
convergence speed and robustness (ability to produce similar results over repeated runs) of DE by
tuning the parameters like population size NP, the scale factor F, and the crossover rate Cr.

In the present work, we propose a family of variants of the DE/target-to-best/1 scheme [3, page 140],
which was also referred to as “Scheme DE2” in the first technical paper on DE [1]. In some DE
literature this algorithm is referred to as DE/current-to-best/1 [16, 17]. To combine the exploration and
exploitation capabilities of DE, we propose a new hybrid mutation scheme that utilizes an explorative
and an exploitive mutation operator, with an objective of balancing their effects. The explorative
mutation operator (referred to as the local mutation model) has a greater possibility of locating the
minima of the objective function, but generally needs more iterations (generations). On the other hand,
the exploitative mutation operator (called by us the global mutation model) rapidly converges to a
minimum of the objective function. In this case there exists the danger of premature convergence to a
suboptimal solution. In the hybrid model we linearly combine the two mutation operators using a new
parameter, called the weight factor. Four different schemes have been proposed and investigated for
adjusting the weight factor, with a view to alleviating user intervention and hand tuning as much as
possible.

Here we would like to mention that although a preliminary version of this work appeared as a
conference paper in [18], the present version has been considerably enhanced and it differs in many
aspects from [18]. It critically examines the effects of the global and local neighborhoods on the
performance of DE and explores a few different ways of tuning of the weight factor (see Section 4)
used for unification of the neighborhood models. In addition, it compares the performance of the
proposed approaches with several state-of-the-art DE variants as well as other evolutionary algorithms
over a test-bed of 24 well-known numerical benchmarks and one real-world optimization problem in
contrast to [18], which uses only six benchmarks and provides limited comparison results.

The remainder of this paper is organized as follows. In Section 2, we provide a brief outline of the DE
family of algorithms. Section 3 provides a short survey of previous research on improving the
performance of DE. Section 4 introduces the proposed family of variants of the DE/target-to-best/1
algorithm. Experimental settings for the benchmarks and simulation strategies are explained in Section
5. Results are presented and discussed in Section 6. Finally, conclusions are drawn in Section 7.

2 The DE Algorithm

Like any other evolutionary algorithm, DE starts with a population of NP D-dimensional parameter
vectors representing the candidate solutions. We shall denote subsequent generations in DE

by max...,1,0 GG = . Since the parameter vectors are likely to be changed over different generations,

we may adopt the following notation for representing the i-th vector of the population at the current
generation as:

].,.....,,,[,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 (1)

For each parameter of the problem, there may be a certain range within which the value of the
parameter should lie for better search results. The initial population (at 0=G) should cover the entire
search space as much as possible by uniformly randomizing individuals within the search space
constrained by the prescribed minimum and maximum

bounds: },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

. Hence we may

initialize the j-th component of the i-th vector as

 3

)()1,0(min,max,,min,0,, jjjijij xxrandxx −⋅+= , (2)

where)1,0(, jirand is a uniformly distributed random number lying between 0 and 1 and is instantiated

independently for each component of the i-th vector. The following steps are taken next: mutation,
crossover, and selection (in that order), which are explained in the following subsections.

a) Mutation:

After initialization, DE creates a donor vector GiV ,

�

 corresponding to each population member or

target vector GiX ,

�

in the current generation through mutation and sometimes using arithmetic

recombination too. It is the method of creating this donor vector that differentiates one DE scheme
from another. Five most frequently referred strategies, implemented in the public-domain DE codes for
producing the donor vectors (available online at http://www.icsi.berkeley.edu/~storn/code.html) are
listed below:

 “DE/rand/1”:).(
,,,,

321 GrGrGrGi iii XXFXV
����

−⋅+= (3)

 “DE/best/1”:).(
,,,,

21 GrGrGbestGi ii XXFXV
����

−⋅+= (4)

 “DE/target-to-best/1”:).()(
,,,,,,

21 GrGrGiGbestGiGi ii XXFXXFXV
������

−⋅+−⋅+= (5)

 “DE/best/2”:).()(
,,,,,,

4321 GrGrGrGrGbestGi iiii XXFXXFXV
������

−⋅+−⋅+= (6)

 “DE/rand/2”:).()(
,,,,,,

54321 GrGrGrGrGrGi iiiii XXFXXFXV
������

−⋅+−⋅+= (7)

The indices ir1 , ir2 , i
r3 , ir4 , and i

r5 are mutually exclusive integers randomly chosen from the range [1,

NP], and all are different from the base index i. These indices are randomly generated once for each
donor vector. The scaling factor F is a positive control parameter for scaling the difference

vectors. GbestX ,

�

 is the best individual vector with the best fitness (i.e. lowest objective function value

for a minimization problem) in the population at generation G. Note that some of the strategies for
creating the donor vector may be mutated recombinants, for example, equation (5) listed above

basically mutates a two-vector recombinant:)(,,, GiGbestGi XXFX
���

−⋅+ . The general convention used

for naming the various mutation strategies is DE/x/y/z, where DE stands for Differential Evolution, x
represents a string denoting the vector to be perturbed, y is the number of difference vectors considered
for perturbation of x, and z stands for the type of crossover being used (exp: exponential; bin:
binomial). The following section discusses the crossover step in DE.

b) Crossover:

To increase the potential diversity of the population, a crossover operation comes into play after
generating the donor vector through mutation. The DE family of algorithms can use two kinds of
crossover schemes - exponential and binomial [1-3]. The donor vector exchanges its components with

the target vector GiX ,

�

 under this operation to form the trial vector

],...,,,[,,,,3,,2,,1, GiDGiGiGiGi uuuuU =
�

. In exponential crossover, we first choose an integer n

randomly among the numbers],1[D . This integer acts as a starting point in the target vector, from

where the crossover or exchange of components with the donor vector starts. We also choose another
integer L from the interval],1[D . L denotes the number of components; the donor vector actually

contributes to the target. After a choice of n and L the trial vector is obtained as:

 4

 =Giju ,, Gijv ,, , for
DDD

Lnnnj 1,...,1, −++=

Gijx ,, , for all other],1[Dj ∈ , (8)

where the angular brackets
D

 denote a modulo function with modulus D. The integer L is drawn

from],1[D according to the following pseudo-code.

L = 0;
DO
{
 L = L+1;
} WHILE (())1,0((Crrand < AND (DL <));

‘Cr’ is called the crossover rate and appears as a control parameter of DE just like F. Hence in effect,
probability (L ≥ υ) = (Cr) υ-1 for any υ > 0. For each donor vector, a new set of n and L must be chosen
randomly as shown above.

On the other hand, binomial crossover is performed on each of the D variables whenever a randomly
picked number between 0 and 1 is less than or equal to the Cr value. In this case the number of
parameters inherited from the donor has a (nearly) binomial distribution. The scheme may be outlined
as:

 Giju ,, = Gijv ,, , if (Crrand ji ≤)1,0(, or)randjj =

 Gijx ,, , otherwise, (9)

where)1,0(, jirand]1,0[∈ is a uniformly distributed random number, which is called anew for each j-

th component of the i-th parameter vector.],....,2,1[Djrand ∈ is a randomly chosen index, which

ensures that GiU ,

�

gets at least one component from GiV ,

�

.

Fig. 1. Change of the trial vectors generated through the crossover operation described in equation (9) due to

rotation of the coordinate system.

 2x
 2'x

 GiU ,_2

�

 GiV ,

�

 1x

GiX ,

�

GiU ,_1

�

1'x GiU ,_4

�

GiU ,_3

�

 5

The crossover operation described in equation (9) is basically a discrete recombination [3]. Figure 1

illustrates a two-dimensional example of recombining the parameters of two vectors GiX ,

�

and GiV ,

�

,

according to this crossover operator, where the potential trial vectors are generated at the corners of a

rectangle. Note that GiV ,

�

can itself be the trial vector (i.e. GiU ,

�

= GiV ,

�

) when 1=Cr . As can be seen

from Figure 1, discrete recombination is a rotationally variant operation. Rotation transforms the
coordinates of both vectors and thus changes the shape of the rectangle as shown in Figure 1.

Consequently, the potential location of the trial vector moves from the possible set (GiU ,_1

�

, GiU ,_2

�

)

to (GiU ,_3

�

, GiU ,_4

�

). To overcome this limitation, a new trial vector generation strategy ‘DE/current-

to-rand/1’ is proposed in [19], which replaces the crossover operator prescribed in equation (9) with

the rotationally invariant arithmetic crossover operator to generate the trial vector GiU ,

�

 by linearly

combining the target vector GiX ,

�

and the corresponding donor vector GiV ,

�

as follows:

).(,,,, GiGiGiGi XVKXU
����

−⋅+=

Now incorporating equation (3) in equation (10) we have:

),)((,,,,,, 321 GiGrGrGrGiGi XXXFXKXU
������

−−⋅+⋅+=

which further simplifies to:

),()(,,
/

,,,, 321 GrGrGiGrGiGi XXFXXKXU
������

−⋅+−⋅+= (10)

where K is the combination coefficient, which has been shown [19] to be effective when it is chosen

with a uniform random distribution from [0, 1] and FKF ⋅=/ is a new constant here.

c) Selection:

To keep the population size constant over subsequent generations, the next step of the algorithm calls
for selection to determine whether the target or the trial vector survives to the next generation i.e.
at 1+= GG . The selection operation is described as:

 1, +GiX
�

,,GiU
�

= if)()(,, GiGi XfUf
��

≤

 ,,GiX
�

= if)()(,, GiGi XfUf
��

> , (11)

where)(Xf
�

is the function to be minimized. So if the new trial vector yields an equal or lower value

of the objective function, it replaces the corresponding target vector in the next generation; otherwise
the target is retained in the population. Hence the population either gets better (with respect to the
minimization of the objective function) or remains the same in fitness status, but never deteriorates.
The complete pseudo-code of the DE is given below:

Pseudo-code for the DE algorithm family

Step 1. Set the generation number 0=G and randomly initialize a population of NP

individuals },......,{ ,,1 GNPGG XXP
��

= with],.....,,,[,,,,3,,2,,1, GiDGiGiGiGi xxxxX =
�

 and each

individual uniformly distributed in the range],[maxmin XX
��

,

where },...,,{ min,min,2min,1min DxxxX =
�

and },...,,{ max,max,2max,1max DxxxX =
�

with

],....,2,1[NPi = .

Step 2. WHILE the stopping criterion is not satisfied
 DO

 6

 FOR 1=i to NP //do for each individual sequentially

 Step 2.1 Mutation Step

 Generate a donor vector },.......,{ ,,,,1, GiDGiGi vvV =
�

corresponding to the i-th target

vector GiX ,

�

 via one of the different mutation schemes of DE (equations (3) to (7))

 Step 2.2 Crossover Step

 Generate a trial vector },.......,{ ,,,,1, GiDGiGi uuU =
�

 for the i-th target vector

GiX ,

�

through binomial crossover (equation (9)) or exponential crossover (equation (8))

or through the arithmetic crossover (equation (10)).

 Step 2.3 Selection Step

 Evaluate the trial vector GiU ,

�

 IF)()(,, GiGi XfUf
��

≤ , THEN GiGi UX ,1,

��

=+ ,)()(,1, GiGi UfXf
��

=+

 IF)()(,, GbestGi XfUf
��

< , THEN GiGbest UX ,,

��

= ,)()(,, GiGbest UfXf
��

=

 END IF
 END IF

 ELSE GiGi XX ,1,

��

=+ ,)()(,1, GiGi XfXf
��

=+

 END FOR

 Step 2.4 Increase the Generation Count 1+= GG

END WHILE

3 A Review of Previous Work on Improving the DE Algorithm

Over the past few years researchers have been investigating ways of improving the ultimate
performance of the DE algorithm by tuning its control parameters. Storn and Price in [1] have
indicated that a reasonable value for NP could be between 5D and 10D (D being the dimensionality of
the problem), and a good initial choice of F could be 0.5. The effective value of F usually ranges in
[0.4, 1].

Gamperle et al. [20] evaluated different parameter settings for DE on the Sphere, Rosenbrock’s and
Rastrigin’s functions. Their experimental results revealed that the global optimum searching capability
and the convergence speed are very sensitive to the choice of control parameters NP, F, and Cr.

Furthermore, a plausible choice of the population size NP is between 3D and 8D, with the scaling
factor F = 0.6 and the crossover rate Cr in [0.3, 0.9]. Recently, the authors in [16] claim that typically
0.4 < F < 0.95 with F = 0.9 is a good first choice. Cr typically lies in (0, 0.2) when the function is
separable, while in (0.9, 1) when the function’s parameters are dependent.

As can be seen from the literature, several claims and counter-claims were reported concerning the
rules for choosing the control parameters, confusing engineers, who try to solve real-world
optimization problems with DE. Further, many of these claims lack sufficient experimental
justification. Therefore researchers consider techniques such as self-adaptation to avoid manual tuning
of the parameters of DE. Usually self-adaptation is applied to tune the control parameters F and Cr.

Liu and Lampinen introduced Fuzzy Adaptive Differential Evolution (FADE) [21] using fuzzy logic
controllers, whose inputs incorporate the relative function values and individuals of successive
generations to adapt the parameters for the mutation and crossover operation. Based on the
experimental results over a set of benchmark functions, the FADE algorithm outperformed the
conventional DE algorithm. In this context, Qin et al. proposed a Self-adaptive DE (SaDE) [22]
algorithm, in which both the trial vector generation strategies and their associated parameters are
gradually self-adapted by learning from their previous experiences of generating promising solutions.

 7

Zaharie proposed a parameter adaptation strategy for DE (ADE) based on the idea of controlling the
population diversity, and implemented a multi-population approach [23]. Following the same line of
thinking, Zaharie and Petcu designed an adaptive Pareto DE algorithm for multi-objective optimization
and also analyzed its parallel implementation [24]. Abbass [25] self-adapted the crossover rate Cr for
multi-objective optimization problems, by encoding the value of Cr into each individual and
simultaneously evolving it with other search variables. The scaling factor F was generated for each
variable from a Gaussian distribution N (0, 1).

Omran et al. [26] introduced a self-adaptive scaling factor parameter F. They generated the value of Cr

for each individual from a normal distribution N (0.5, 0.15). This approach (called SDE) was tested on
four benchmark functions and performed better than other versions of DE. Besides adapting the control
parameters F or Cr, some researchers also adapted the population size. Teo proposed DE with Self
Adapting Populations (DESAP) [27], based on Abbass’s self-adaptive Pareto DE [25]. Recently, Brest
et al. [28] encoded control parameters F and Cr into the individual and evolved their values by using

two new probabilities 1τ and 2τ . In their algorithm (called SADE), a set of F values was assigned to

each individual in the population. With probability 1τ , F is reinitialized to a new random value in the

range of [0.1, 1.0], otherwise it is kept unchanged. The control parameter Cr, assigned to each
individual, is adapted in an identical fashion, but with a different re-initialization range of [0, 1] and

with the probability 2τ . With probability 2τ , Cr takes a random value in [0, 1], otherwise it retains its

earlier value in the next generation.

Das et al. [29] introduced two schemes for adapting the scale factor F in DE. In the first scheme
(called DERSF: DE with Random Scale Factor) they varied F randomly between 0.5 and 1.0 in
successive iterations. They suggested decreasing F linearly from 1.0 to 0.5 in their second scheme
(called DETVSF: DE with Time varying Scale Factor). This encourages the individuals to sample
diverse zones of the search space during the early stages of the search. During the later stages, a
decaying scale factor helps to adjust the movements of trial solutions finely so that they can explore
the interior of a relatively small space in which the suspected global optimum lies.

DE/rand/1/either-or is a state-of-the-art DE variant described by Price et al. [3, page 118]. In this

algorithm, the trial vectors that are pure mutants occur with a probability Fp and those that are pure

recombinants occur with a probability Fp−1 . The scheme for trial vector generation may be outlined

as:

)(
,,,,

321 GrGrGrGi iii XXFXU
����

−⋅+= , if Fi prand <)1,0(

).2(
,,,, 1321 GrGrGrGr

iiii XXXKX
����

−+⋅+= , otherwise (12)

Where, according to Price et al.,)1(5.0 +⋅= FK serves as a good choice of the parameter K for a

given F.

Rahnamayan et al. have proposed an Opposition-based DE (ODE) [30] that is specially suited for
noisy optimization problems. The conventional DE algorithm was enhanced by utilizing the opposition
number-based optimization concept in three levels, namely, population initialization, generation
jumping, and local improvement of the population’s best member.

Yang et al. [31] proposed a hybridization of DE with the Neighborhood Search (NS), which appears as
a main strategy underpinning Evolutionary Programming (EP) [32]. The resulting algorithm, known
as NSDE, performs mutation by adding a normally distributed random value to each target-vector
component in the following way:

 8

 +=
GrGi iXV

,,
1

��

)5.0,5.0(., Nd Gi

�

, if 5.0)1,0(<irand

 δ.,Gid
�

, otherwise, (13)

where
GrGrGi ii XXd

,,,
32

���

−= is the usual difference vector, N(0.5, 0.5) denotes a Gaussian random

number with mean 0.5 and standard deviation 0.5, and δ denotes a Cauchy random variable with scale

parameter 1=t . Recently Yang et al. [33] used a Self-adaptive NSDE in the cooperative coevolution
framework that is capable of optimizing large scale non-separable problems (up to 1000 dimensions).
They proposed a random grouping scheme and adaptive weighting for problem decomposition and
coevolution. Somewhat similar in spirit to the present paper is the study by Yang et al. [34] on self-
adaptive differential evolution with neighborhood search (SaNSDE). SaNSDE incorporates self-
adaptation ideas from the Qin et al’s SaDE [22] and proposes three self-adaptive strategies: self-
adaptive choice of the mutation strategy between two alternatives, self-adaptation of the scale factor F,
and self-adaptation of the crossover rate Cr. We would like to point out here that in contrast to Yang et

al.’s works on NSDE and SaNSDE, we keep the scale factor non-random and use a ring-shaped
neighborhood topology (inspired by PSO [37]), defined on the index graph of the parameter vectors, in
order to derive a local neighborhood-based mutation model. Also instead of F and Cr, the weight
factor that unifies two kinds of mutation models, have been made self-adaptive in one of the variants of
DE/target-to-best/1 scheme, proposed by us. Section 4 describes these issues in sufficient details.

Noman and Iba [35, 36] proposed the Fittest Individual Refinement (FIR); a crossover-based local
search method for DE. The FIR scheme accelerates DE by enhancing its search capability through
exploration of the neighborhood of the best solution in successive generations.

As will be evident from Section 4, the proposed method differs significantly from the works described
in the last couple of paragraphs. It draws inspiration from the neighborhood topologies used in PSO
[37]. Similar to DE, PSO has also emerged as a powerful real parameter optimization technique during
the late 1990s. It emulates the swarm behavior of insects, animals herding, birds flocking, and fish
schooling, where these swarms search for food in a collaborative manner. A number of significantly
improved variants of basic PSO have been proposed in recent past to solve both benchmark and real-
world optimization problems, for example, see [38, 39]. Earlier attempts to hybridize DE with different
operators of the PSO algorithm may be traced to the works of Zhang et al. [40] and Das et al. [41].

4 DE with a Neighborhood-based Mutation Operator

4.1 The DE/target-to-best/1 --- A few Drawbacks

Most of the population-based search algorithms try to balance between two contradictory aspects of
their performance: exploration and exploitation. The first one means the ability of the algorithm to
‘explore’ or search every region of the feasible search space while the second denotes the ability to
converge to the near-optimal solutions as quickly as possible. The DE variant known as DE/target-to-
best/1 (equation (5)) uses the best vector of the population to generate donor vectors. By ‘best’ we
mean the vector that corresponds to the best fitness (e.g., the lowest objective function value for a
minimization problem) in the entire population at a particular generation. The scheme promotes
exploitation since all the vectors/genomes are attracted towards the same best position (pointed to by
the ‘best’ vector) on the fitness landscape through iterations, thereby converging faster to that point.
But as a result of such exploitative tendency, in many cases, the population may lose its global
exploration abilities within a relatively small number of generations, thereafter getting trapped to some
locally optimal point in the search space.

In addition, DE employs a greedy selection strategy (the better between the target and the trial vectors
is selected) and uses a fixed scale factor F (typically in [0.4, 1]). Thus if the difference vector

GrGr XX ,, 21

��

− , used for perturbation is small (this is usually the case when the vectors come very

close to each other and the population converges to a small domain), the vectors may not be able to

 9

explore any better region of the search space, thereby finding it difficult to escape large plateaus or
suboptimal peaks/valleys. Mezura-Montes et al., while comparing the different variants of DE for
global optimization in [16], have noted that DE/target-to-best/1 shows a poor performance and remains
inefficient in exploring the search space, especially for multi-modal functions. The same conclusions
were reached by Price et al. [3, page 156].

4.2 Motivations for the Neighborhood-based Mutation

A proper trade–off between exploration and exploitation is necessary for the efficient and effective
operation of a population-based stochastic search technique like DE, PSO etc. The DE/target-to-
best/1, in its present form, favors exploitation only, since all the vectors are attracted by the same best
position found so far by the entire population, thereby converging faster towards the same point.

In this context we propose two kinds of neighborhood models for DE. The first one is called the local

neighborhood model, where each vector is mutated using the best position found so far in a small
neighborhood of it and not in the entire population. On the other hand, the second one, referred to as

the global mutation model, takes into account the globally best vector GbestX ,

�

of the entire population

at current generation G for mutating a population member. Note that DE/target-to-best/1 employs only
the global mutation strategy.

A vector’s neighborhood is the set of other parameter vectors that it is connected to; it considers their
experience when updating its position. The graph of inter-connections is called the neighborhood
structure. Generally, neighborhood connections are independent of the positions pointed to by the
vectors. In the local model, whenever a parameter vector points to a good region of the search space, it
only directly influences its immediate neighbors. Its second degree neighbors will only be influenced
after those directly connected to them become highly successful themselves. Thus, there is a delay in
the information spread through the population regarding the best position of each neighborhood.
Therefore, the attraction to specific points is weaker, which prevents the population from getting
trapped in local minima. We would like to mention here that vectors belonging to a local

neighborhood are not necessarily local in the sense of their geographical nearness or similar fitness
values. As will be seen in the next section, the overlapping neighborhoods have been created in DE
according to the order of the indices of the population members, following the neighborhood models in
PSO.

Finally we combine the local and the global model using a weight factor that appears as a new
parameter in the algorithm. The weight factor may be tuned in many different ways. In what follows
we describe these issues in sufficient details. Note that the neighborhoods of different vectors were
chosen randomly and not according to their fitness values or geographical locations on the fitness
landscape, following the PSO philosophy [37]. This preserves the diversity of the vectors belonging to
the same neighborhood.

4. 3 The Local and Global Neighborhood-based mutations in DE

Suppose we have a DE population],....,,[,,2,1 GNPGGG XXXP
���

= where each

GiX ,

�

),...,2,1(NPi = is a D-dimensional parameter vector. The vector indices are sorted only

randomly (as obtained during initialization) in order to preserve the diversity of each neighborhood.

Now for every vector GiX ,

�

we define a neighborhood of radius k (where k is a non-zero integer from 0

to 2)1(−NP , as the neighborhood size must be smaller than the population size, i.e. NPk ≤+12),

consisting of vectors GkiGiGki XXX ,,, ,...,,..., +−

���

. We assume the vectors to be organized on a ring

topology with respect to their indices, such that vectors GNPX ,

�

and GX ,2

�

are the two immediate

 10

neighbors of vector GX ,1

�

. The concept of local neighborhood is schematically illustrated in Figure 2.

Note that the neighborhood topology is static and has been defined on the set of indices of the vectors.
Although various neighborhood topologies (like star, wheel, pyramid, 4-clusters, and circular) have
been proposed in the literature for the PSO algorithms [42], after some initial experimentation over
numerical benchmarks, we find that in the case of DE (where the population size is usually larger than
in the case of PSO) the circular or ring topology provides best performance compared to other salient
neighborhood structures.

For each member of the population a local donor vector is created by employing the best (fittest)
vector in the neighborhood of that member and any two other vectors chosen from the same
neighborhood. The model may be expressed as:

)()(,,,,_,, GqGpGiGbestnGiGi XXXXXL
i

������

−⋅+−⋅+= βα , (14)

where the subscript n_besti indicates the best vector in the neighborhood of GiX ,

�

 and

],[, kikiqp +−∈ with iqp ≠≠ . Similarly the global donor vector is created as:

)()(,,,,_,, 21 GrGrGiGbestgGiGi XXXXXg
�����

�

−⋅+−⋅+= βα , (15)

where the subscript g_best indicates the best vector in the entire population at generation G and

],1[, 21 NPrr ∈ with irr ≠≠ 21 . α and β are the scaling factors.

Note that in equations (14) and (15), the first perturbation term on the right hand side (the one
multiplied byα) is an arithmetical recombination operation, while the second term (the one multiplied
by β) is the differential mutation. Thus in both the global and local mutation models, we basically

generate mutated recombinants, not pure mutants.

Fig. 2. The ring topology of neighborhood in DE. The dark spheres indicate a neighborhood of radius 2 of the i-th
population member where i = 9.

Now we combine the local and global donor vectors using a scalar weight)1,0(∈w to form the

actual donor vector of the proposed algorithm:

 GiGiGi LwgwV ,,,).1(.
�

�

�

−+= . (16)

Clearly, if w = 1and in addition F== βα , the donor vector generation scheme in (16) reduces to

that of DE/target-to-best/1. Hence the latter may be considered as a special case of this more general
strategy involving both global and local neighborhood of each vector synergistically. From now on, we
shall refer to this version as DEGL (DE with Global and Local neighborhoods). The rest of the

GX ,1

�

GNPX ,

�

GX ,2

�

GiX ,

�

GiX ,1−

�

GiX ,2−

�

GiX ,1+

�

GiX ,2+

�

 11

algorithm is exactly similar to DE/rand/1/bin. DEGL uses a binomial crossover scheme and follows the
pseudo-code given in Section 3.

 Note that in each generation, the vectors belonging to a DE population are perturbed sequentially. If a

target vector GiX ,

�

is replaced with the corresponding trial vector GiU ,

�

, the neighborhood-best

Gbestn i
X ,_

�

and the globally best vector GbestgX ,_

�

may also be updated by GiU ,

�

, provided the latter

yields a lower value of the objective function. In Section 4.5, we discuss the additional computational
complexity of updating the neighborhood-best vectors in DEGL after the replacement of each target
vector in a generation.

4. 4 Control Parameters in DEGL

DEGL introduces four new parameters: ,,, wβα and the neighborhood radius k. Among them α and

β are playing the same role as the constant F in (5). Thus, in order to reduce the number of parameters

further, we take F== βα . The most crucial parameter in DEGL is perhaps the weight factor w,

which controls the balance between the exploration and exploitation capabilities. Small values of w
(close to 0) in (16) favor the local neighborhood component, thereby resulting in better exploration. On
the other hand, large values (close to 1) favor the global variant component, promoting exploitation.
Therefore, values of w around the middle point, 0.5, of the range [0, 1] result in the most balanced
DEGL versions. However, such balanced versions do not take full advantage of any special structure
of the problem at hand (e.g., uni-modality, convexity etc.). In such cases, weight factors that are biased
towards 0 or 1 may exhibit better performance. Moreover, on-line adaptation of w during the execution
of the algorithm can enhance its performance. Optimal values of the weight factor will always depend
on the problem at hand. We considered three different schemes for the selection and adaptation of w to
gain intuition regarding DEGL’s performance and we describe them in the following paragraphs.

1) Increasing Weight Factor: All vectors have the same weight factor which is initialized to 0 and is
increased up to 1 during the execution of the algorithm. Thus, exploration is favored in the first stages
of the algorithm’s execution (since w = 0 corresponds to the local neighborhood model) and
exploitation is promoted at the final stages, when w assumes higher values. Let G denote the

generation number, Gw the weight factor at generation G, and Gmax the maximum number of

generations. We considered two different increasing schedules in our study:

 A) Linear Increment: w is linearly increased from 0 to 1:

maxG

G
wG = . (17)

 B) Exponential Increment: The weight factor increases from 0 to 1 in an exponential fashion as
follows:

 1)2ln(.exp
max

−







=

G

G
wG

. (18)

 This scheme results in slow transition from exploration to exploitation in the early stages of the
algorithm’s execution, but exhibits faster transition in the later stages.

2) Random Weight Factor: In this scheme the weight factor of each vector is made to vary as a

uniformly distributed random number in (0, 1) i. e.)1,0(~, randw Gi . Such a choice may decrease

the convergence speed (by introducing more diversity).

3) Self Adaptive Weight Factor: In this scheme, each vector has its own weight factor. The factor is
incorporated in the vector as an additional variable, augmenting the dimension of the problem. Thus, a

generation now consists of vectors },{ ,,, GiGiGi SXa
��

�

= where }{ ,, GiGi wS =
�

and Giw , is the weight

 12

factor for vector GiX ,

�

. During the initialization phase of DE, Giw , is randomly initialized in (0.0, 1.0).

Next, while evolving a vector Gia ,

�

, at first local and global mutant vectors GiL ,

�

and Gig ,

�

are formed

for GiX ,

�

 following equations (14) and (15). The sub-vector S
�

undergoes global mutation only and

weight factors perturbing S
�

 come from the same population members Gra ,1

�

and Gra ,2

�

, which were

also used to form Gig ,

�

. The mutation of Giw , leads to the formation of a new trial weight factor

/
,Giw according to the following equation:

).().(,,,,_,
/
, 21 GrGrGiGbestgGiGi wwFwwFww −+−+= , (19)

where, Gbestgw ,_ is the weight factor associated with the best parameter vector GbestgX ,_

�

. The value

of the newly formed /
,Giw is restricted to the range [0.05, 0.95] in the following way:

 if 95.0/
, >Giw , 95.0/

, =Giw ;

 else if ,05.0/
, <Giw 05.0/

, =Giw , (20)

/
,Giw is then used to combine GiL ,

�

and Gig ,

�

 according to equation (16) and this leads to the formation

of the new donor parameter vector GiV ,

�

. The donor vector thus formed exchanges its components with

GiX ,

�

following the binomial crossover and results in the production of the trial vector GiU ,

�

. Note that

the weight factor does not undergo crossover. Now, the newly formed weight factor is promoted to the

next generation only if GiU ,

�

 yields an equal or lower objective function value as compared to GiX ,

�

,

i. e.,

 }}{,{ /
,1,,1,1, GiGiGiGiGi wSUXa === +++

���

�

, if)()(,, GiGi XfUf
��

≤

 }}{,{ ,1,,1,1, GiGiGiGiGi wSXXa === +++

���

�

, otherwise. (21)

The process is repeated sequentially for each vector in a generation. Note that the weight factors
associated with the neighborhood-best and globally best vectors are not updated every time a trial
vector replaces the corresponding target. The weight factor for a parameter vector is changed only once
according to equations (19) and (20) in each generation. According to the self-adaptation scheme, the

dynamics of DEGL are allowed to determine the optimal Giw , for each vector, individually, capturing

any special structure of the problem at hand.

Finally we would like to point out that a proper selection of the neighborhood size affects the trade–off
between exploration and exploitation. However, there are no general rules regarding the selection of
neighborhood size, and it is usually based on the experience of the user. The effect of neighborhood
size on the performance of DEGL has been further investigated in Section 6.5.

4. 5 Runtime Complexity of DEGL – a Discussion

Runtime-complexity analysis of the population-based stochastic search techniques like DE, GA etc. is
a critical issue by its own right. Following the works of Zielinski et al. [43] we note that the average
runtime of a standard DE algorithm usually depends on its stopping criterion. While computing the
run-time complexity, we usually take into account the fundamental floating-point arithmetic and
logical operations performed by an algorithm [44]. We may neglect very simple operations like
copy/assignment etc. as these are merely data-transfer operations between the ALU and/or CPU
registers and hardly require any complex digital circuitry like adder, comparator etc. [44, 45]. Now, in
each generation of DE, a loop over NP is conducted, containing a loop over D. Since the mutation and
crossover operations are performed at the component level for each DE vector, the number of

 13

fundamental operations in DE/rand/1/bin is proportional to the total number of loops conducted until
the termination of the algorithm. Thus, if the algorithm is stopped after a fixed number of generations

Gmax, then the runtime complexity is)(maxGDNPO ⋅⋅ .

For DE/target-to-best/1, runtime complexity of finding the globally best vector depends only on
comparing the objective function value against the single best vector’s objective function value. Note
that the best objective function evaluation value must be upgraded for each newly generated trial
vector, if it replaces the target vector. Now that means in the worst possible case (when the target
vector is always replaced by the trial vector), this is done maxGNP ⋅ times. Thus, the overall runtime

remains)()),(max(maxmaxmax GDNPOGDNPGNPO ⋅⋅=⋅⋅⋅ .

In DEGL, besides the globally best vector, we have to take into account the best vector of each
neighborhood as well. Each individual vector is endowed with a small memory, which can keep track
of the best vector in its neighborhood and the corresponding objective function value. At the very
onset, once all the vectors are initialized, a search is performed to detect the neighborhood-best for
each individual. Note that this search is performed only once at 0=G . In subsequent generations,
these locally best vectors only need to be updated in the memory of the neighboring vectors. This is
just like the updating phase of the globally best vector in DE/target-to-best/1 according to step 2.3 of
the DE pseudo-code provided earlier. Now let us try to estimate the cost of the initial search. Note that
the neighborhoods in DEGL are actually overlapping in nature (on the index-graph) and this is
illustrated in Figure 3. Any two adjacent vectors (with respect to their indices) will have

kk 22112 =−++ number of common neighbors.

Fig. 3. The overlapping of neighborhoods in DEGL.
Suppose)(,Gik XN

�

indicates the set of vectors belonging to the immediate neighborhood of radius k

for the vector GiX ,

�

. Then evidently the cardinality of both the sets)()(,1, Gi

c

kGik XNXN +∩
��

and

)()(,1, GikGi

c

k XNXN +∩
��

is exactly 1 (where c

kN stands for complement of the set kN). We observe

that)()(,1,, Gi
c
kGikGki XNXNX +− ∩∈
���

 and)()(,1,,1 GikGi
c
kGki XNXNX +++ ∩∈

���

. Now we start by

detecting the best vector of the neighborhood of any population member, say GiX ,

�

 and call

it Gbestn i
X ,_

�

. This is equivalent to finding the lowest entry from an array of 12 +k numbers (objective

 GX ,1

�

 GNPX ,

�

Neighborhood

GiX ,

�

 GX ,2

�

 GiX ,

�

GiX ,1+

�

Neighborhood of

GiX ,1+

�

Region of
Overlap

 14

function values) and requires k2 number of comparisons. Next, to calculate the best vector in the

neighborhood of GiX ,1+

�

, if GkiGbestn XX
i ,,_ −≠

��

 then we simply need to compare the objective function

values of GkiX ,1++

�

and Gbestn i
X ,_

�

in order to determine Gbestn i
X ,_ 1+

�

. This requires only one

comparison. But if unfortunately GkiGbestn XX
i ,,_ −=

��

, we shall have to find the neighborhood best of

GiX ,1+

�

by taking its k2 neighbors into account and this requires)(kO runtime. Hence in the worst

possible case (when the current neighborhood’s best vector is always excluded from the serially next
vector’s neighborhood) searching the best vectors of all the neighborhoods is completed in

)(kNPO ⋅ time.

Once the search for all neighborhood-bests is finished, in subsequent generations, the best vector in the

neighborhood of GiX ,

�

 is updated only if a newly generated trial vector GiU ,

�

 replaces the target vector

GiX ,

�

 and in addition to that)()(,_, GbestnGi i
XfUf
��

< . It is possible that Gbestn i
X ,_

�

differs from

Gbestn i
X ,_ 1+

�

 i.e. two vectors, adjacent on the index graph, may have distinct neighborhood-best

vectors. This happens when the best vector in the neighborhood of GiX ,1+

�

 is GkiX ,1++

�

. Under this

condition, it is possible that GiU ,

�

is better than Gbestn i
X ,_

�

but not better than Gbestn i
X ,_ 1+

�

. Hence in

order to update the best vectors in the memories of all the neighbors of GiX ,

�

(when

)()(,_, GbestnGi i
XfUf
��

< is satisfied) we have to compare the objective function values of GiU ,

�

 and

the neighborhood-bests in the memories of k2 neighbors of GiX ,

�

. Thus in the worst possible case,

updating of all the local best vectors in the memories of the neighbors of each vector requires
)(kNPO ⋅ comparisons in each generation. Evidently, over maxG generations, the number of additional

comparisons necessary is)(maxGkNPO ⋅⋅ . This implies that the worst case complexity of DEGL is

actually)),(max(maxmax GDNPGkNPO ⋅⋅⋅⋅ . Now, the asymptotic order of complexity for DEGL

remains)(maxGDNPO ⋅⋅ if Dk ≤ . Please note that this condition is usually satisfied when DEGL

is applied to the optimization of higher dimensional functions. For example, the usual population size
for DE is DNP 10= . If the neighborhood size is approximately 10% of the population size (which, as
can be seen later, provides reasonably good results with DEGL), we have

2

1
)1.0(12

−
=⇒=⋅=+

D
kDNPk with 1>D . Clearly, in this case we have Dk ≤ . Simple

algebraic calculations show that this condition holds true if the neighborhood size is below 20% of the
population size NP and 1>D . Hence, we can say that under such conditions,

)()),(max(maxmaxmax GDNPOGDNPGkNPO ⋅⋅=⋅⋅⋅⋅ and thus DEGL does not impose any serious

burden on the runtime complexity of the existing DE variants.

In order to validate the arguments made above, we provide in Table 1 the results of code-function
profiling for our implementations of classical DE (DE/rand/1/bin) and DEGL (with random weight
factor) using the profiler available with MS Visual C++ 6.0. Both the algorithms were coded in the C
language and run on the simple 50-dimensional sphere function (1f in the list of benchmarks provided

in Table 4). The least complex sphere function was chosen so that most of the CPU time may be spent
on the DE operators and not on function evaluations. Here our primary objective is to observe what
percentage of the total CPU time is used by the evolutionary operators of DEGL and DE/rand/1/bin.
Both algorithms use the same prime modules or code-functions: init_pop (for initializing population),
mutate_vector (for performing mutation and creating donor vector), recombine (to perform crossover
and create the trial vector), select_and_update (to compare the objective function values of trial and

 15

target vectors and in DEGL also to update the neighborhood bests if for the i-th vector, the condition

)()(,_, GbestnGi i
XfUf
��

< holds), DE_Operator (module that calls the functions mutate_vector,

recombine, and select_and_update for each vector sequentially), evaluate_cost (function that evaluates
the objective function for a parameter vector), and the main. The programs were run on a Pentium IV,
2.2 GHz PC, with 512 KB cache and 2 GB of main memory in Windows Server 2003 environment. In
Table 1 we provide the code function profiling results as means (with standard deviations in
parentheses) of 1000 runs of the programs, each run continued up to 105 cost function evaluations
(FEs).

Table 1. Code-function runtime profiles for DE/rand/1/bin and DEGL

Code-function runtime as % of CPU time
Algorithm

Total

execution

time (in

milliseconds)

init_pop mutate_

vector

recombine select_and

_update

DE_operator evaluate_

cost

main

DE/rand/
1/bin

9382.703

(1825.335)

0.122

(0.0051)

16.728

(0.628)

29.661

(1.481)

8.726

(7.335)

28.824

(3.561)

13.721

(2.727)

2.018

(0.114)

DEGL 9739.684

(1473.627)

0.109

(0.0046)

15.431

(0.937)

16.362

(2.771)

16.839

(6.361)

36.836

(1.663)

12.954

(1.638)

1.469

(0.118)

Table 1 shows that, as expected, the total execution time for DEGL is only marginally higher than that
for DE/rand/1/bin. This is because around 16.9% of the total CPU time is consumed by the
select_and_update function in DEGL, due to the extra comparisons required for updating the
neighborhood-bests. However, if we select a stopping criterion based on a threshold objective function
value, instead of the stopping criterion based on maximum number of FEs, DEGL can even take less
computation time as compared to DE/rand/1/bin in some cases. This is because DEGL can attain the
threshold objective function value much quicker, consuming significantly smaller number of FEs, due
to the better trade-off between exploration and exploitation abilities achieved by its neighborhood-
based mutation operators. This fact has been illustrated by providing, in Tables 2 and 3, the mean
processor-time taken by both the algorithms for both stopping criteria over five most popular
benchmark functions used for testing the evolutionary algorithms. Note that both the algorithms start
from the same initial population and run under the same software and hardware platforms. All the
numerical benchmarks dealt in here are in 25 dimensions, have their true optima at 0.00, and for all of
them the target threshold value was set at 1.00e-05 in Tales 2 and 3. A detailed description of these
functions can be found in Table 4 in the following section. Each result is the average of 50 independent
runs.

We would like to point out that, in the evolutionary computing literature, comparison of the
computational costs of various evolutionary algorithms is usually performed on the basis of the number
of FEs they take to reach a predefined function-value. Processor time cannot serve as a reliable metric
in this context, because first, it is not independent of the hardware and software platforms used and
second, it may provide some unfair advantage to algorithms that use lower computational overheads.
In addition, the processor time depends on the style of coding an algorithm [46]. The advantage of
measuring the runtime complexity by counting the number of FEs is that the correspondence between
this measure and the processor time becomes stronger as the function complexity increases. In Section
6, we compare the computational cost and convergence speed of a number of DE-variants using this
measure. The tables included in this section are intended only to provide an approximate feel of the
relative time-complexities of DEGL and classical DE.

Table 2 shows that when DEGL and DE/rand/1/bin are run for the same number of FEs (corresponding
to the same number of generations for both, as they have the same population size), the processor time
required by the former is slightly higher than that of the latter. Table 3, however, indicates that DEGL
may reach the predefined threshold value with less processor time as compared to DE/rand/1/bin.

 16

Table 2. A comparison of absolute run-times of DEGL and DE/rand/1/bin, when both the algorithms were run for
a fixed number of FEs.

Table 3. A comparison of absolute run-times of DEGL and DE/rand/1/bin, when both the algorithms were run
until they attain a pre-defined objective function value.

5. Experimental Set-up

5.1 Benchmark Functions

We have used a test-bed of twenty-one traditional numerical benchmarks (Table 4) [47] and three
composition functions from the benchmark problems suggested in CEC 2005 [48] to evaluate the
performance of the new DE-variant. The 21 traditional benchmarks described by Yao et al. have been

reported in Table 4 where D represents the number of dimensions. For 131 ff − we have tested for D =

25 to 100 in steps of 25. Among these benchmarks, functions 131 ff − are multi-dimensional

problems. Functions 51 ff − are uni-modal (there is some recent evidence [49] that f5 is multi-modal

for D > 3). Function 6f is a step function with one minimum and is discontinuous. Function 7f is a

noisy quartic function, where random [0, 1) is a uniformly distributed random number in [0, 1).

Mean processor time (in milliseconds) and

standard deviation (in parentheses)

Function

DE/rand/1/bin DEGL

Step function (f6) 3692.84

(688.25)

3973.38

(827.51)

Rosenbrock’s

function (f5)

6726.57

(1425.53)

7061.48

(1930.51)

Rastrigin’s function

(f9)

5883.54

(629.63)

6273.38

(447.23)

Ackley’s function

(f11)

5094.68

(1624.83)

5268.46

(324.68)

Griewank’s

function (f12)

5635.92

(1023.35)

6163.28

(729.46)

Mean processor time (in milliseconds) and

standard deviation (in parentheses)

Function

Threshold
objective-

function value to
reach

DE/rand/1/bin DEGL

Step function (f6) 1.00-05 3022.84

(271.22)

2873.38

(712.58)

Rosenbrock’s function (f5) 1.00-05 5718.92

(1425.53)

5448.37

(1628.31)

Rastrigin’s function (f9) 1.00-05 2483.56

(442.67)

1682.94

(538.19)

Ackley’s function (f11) 1.00-05 839.68

(154.41)

692.70

(32.61)

Griewank’s function (f12) 1.00-05 4836.29

(1023.35)

4667.25

(1416.47)

 17

 Functions 138 ff − are multi-modal with the number of local minima increasing exponentially with

the problem dimension [47]. They apparently belong to the most difficult class of problems for many

optimization algorithms. Functions 2114 ff − are low-dimensional functions which have only a few

local minima. For uni-modal functions, the convergence rates of the DE algorithms are more
interesting than the final results of optimization as there are other methods which are specifically
designed to optimize uni-modal functions. For multi-modal functions, the final results are much more
important since they reflect an algorithm’s ability of escaping from poor local optima and locating a

good near-global optimum. We omitted 19f and 20f from Yao et al.’s study [47] because of

difficulties in obtaining the definitions of the constants used in these functions.

The three composition functions)(18 Xf
�

,)(19 Xf
�

, and)(21 Xf
�

, taken from CEC 2005

benchmarking problems [48], are here marked as CF1, CF2, and CF3 respectively. All of them are
non-separable, rotated, and multi-modal functions containing a large number of local optima. For all of

them the search range is DX]5,5[−∈
�

. The global optimum of both CF1 and CF2 is

10)(* =Xf
�

and that for CF3 is 360)(* =Xf
�

. The detailed principle of the composite functions is

given in [48].

For the generalized penalized functions 12f and 13f , in Table 1, note that

),,,(mkaxu i = m

i axk)(− , if axi >

 = 0, if axa i ≤≤−

 = m

i axk)(−− , if axi −<

and)1(
4

1
1 ii xy ++= .

Values of the other constants used in the expressions of the benchmark functions can be found in [47].

5.2 Other Optimization Problems Considered

In this section we describe two interesting real-world problems that have been used to test the efficacy
of the DEGL family. The problems are selected according to the level of difficulty that they present to
the proposed algorithms.

5.2.1 The Spread Spectrum Radar Poly-phase Code Design Problem

A famous problem of optimal design arises in the field of spread spectrum radar poly-phase codes [50].
Such a problem is very well-suited for the application of global optimization algorithms like DE. The
problem can be formally stated as:

 Global min)(Xf
�

=)}(),....,(max{ 21 XX m

��

ϕϕ , (22)

 where },...,1,20|),....,{(1 DjxxxX j

D

D =≤≤ℜ∈= π
�

 and 12 −= Dm ,

with),cos()(
1|12|

12 ∑ ∑
= −−−=

− =
D

ij

j

jik

ki xX
�

ϕ Di ,...,2,1=

),cos(5.0)(
1 1|12|

2 ∑ ∑
+= −−−=

+=
D

ij

j

jik

ki xX
�

ϕ 1,...,2,1 −= Di

),()(XX iim

��

ϕϕ −=+ mi ,...,2,1= . (23)

According to [50] the above problem has no polynomial time solution. The objective function for D =
2 is shown in Figure 4.

 18

Table 4: 21 Traditional Benchmark Functions [47]

Function D Search Range Optimum Value

∑
=

=
D

i

i
xXf

1

2
1)(
� 25, 50, 75,

and 100
100100 ≤≤−

i
x 0)0(

1
=

�

f

∏∑
==

+=
D

i

i

D

i

i xxXf

11
2)(
� 25, 50, 75,

and 100
1010 ≤≤−

i
x 0)0(

2
=

�

f

2

1 1
3)()(∑ ∑

= =

=
D

i

i

j

jxXf
� 25, 50, 75,

and 100
100100 ≤≤−

i
x 0)0(

3
=

�

f

DixXf i ≤≤= 1|,|max)(4

�

 25, 50, 75,
and 100

100100 ≤≤−
i

x 0)0(
4

=
�

f

])1()(100[)(222
1

1
15 −+−= ∑

−

=

+ ii

D

i

i xxxXf
�

25, 50, 75,
and 100

3030 ≤≤−
i

x 0)1(
5

=
�

f

 ()∑
=

+=
D

i

ixXf
1

2
6 5.0)(
� 25, 50, 75,

and 100
100100 ≤≤−

i
x

2

1

2

1
,0)(6 <≤−= ippf

�

[)1,0).()(
1

4
7 randxixf

D

i

i += ∑
=

� 25, 50, 75,
and 100

28.128.1 ≤≤−
i

x

0)0(
7

=
�

f

)||sin(.)(
1

8 i

D

i

i xxXf ∑
=

−=
� 25, 50, 75,

and 100
500500 ≤≤−

i
x 3.41898)97.420(8 −=f

for D = 100

]10)2cos(10[)(
1

2
9 +−= ∑

=
i

D

i

i xxxf π
 25, 50, 75,

and 100
12.512.5 ≤≤−

i
x

0)0(
9

=
�

f

ex
D

x
D

Xf

D

i

i

D

i

i

++








−













−−=

∑

∑

=

=

202cos
1

exp

1
2.0exp20)(

1

1

2
10

π

� 25, 50, 75,
and 100

3232 ≤≤−
i

x 0)0(
10

=
�

f

∏∑
==

+−=
D

i

i
D

i

i
i

x
xXf

11

2
11 1)cos(

4000

1
)(
�

25, 50, 75,
and 100

600600 ≤≤− ix 0)0(
11

=
�

f

)4,100,10,(})1(

)](sin101[.)1()(sin10{)(

1

2

1
2

1

1

2
1

2
12

∑

∑

=

+

−

=

+−+

+−+=

D

i

iD

i

D

i

i

xuy

yxy
D

Xf ππ
π� 25, 50, 75,

and 100
5050 ≤≤−

i
x 0)1(

12
=−f

)4,100,5,()}2(sin1){1(

)]3(sin1.[)1()3({sin1.0)(

1

2

1
22

1

1
1

2
13

∑

∑

=

+

−

=

++−+

+−+=

D

i

inD

i

D

i

i

xuxx

xxxXf

π

ππ
�

25, 50, 75,

and 100
5050 ≤≤−

i
x

1428.1

)76.4,1,...,1(
13

−=

−f

16
25

1

1

0
14))(1(

500

1
()(−

= =

∑ ∑ −+++=
j i

iji axjXf
� 2 54.6554.65 ≤≤− ix

998.0

)95.31(
14

=

−f

2

32
2

1
2

0
10

0
15)

)(
()(

xxbb

xbbx
aXf

ii

ii

i

i
++

+
−= ∑

=

�
4 55 ≤≤−

i
x

0003075.0

)1358.0,1231.0,1908.0,1928.0(15

=

f

4
1

2
1

10
6

0
4
0

2
016

44

3

1
1.24)(

xx

xxxxxXf

+−

++−=
� 2 55 ≤≤−

i
x

0316.1

)71.0,09.0(
16

−=

−f

10)cos()
8

1
1(10

)6
5

4

1.5
()(

0

2
0

2
02117

+−

+−+−=

x

xxxXf

π

ππ

� 2 55 ≤≤−
i

x

398.0

)47.2,42.9(
17

=

f

)}273648123218(

)32(30)}{3614

31419()1(1{)(

2
1101

2
00

2
10

2
1101

2
00

2
1018

xxxxxx

xxxxxx

xxxxXf

+−++−

−++−−

+−+++=
�

 2 22 ≤≤−
i

x
3

)00.1,0549.1(
18

=

−ef

1
5

1
19))()(()(−

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

�� 4 1010 ≤≤−
i

x 1532.10)4(19 −=
�

f

1
7

1
20))()(()(−

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

�� 4 1010 ≤≤−
i

x 4029.10)4(20 −=
�

f

1
10

1
21))()(()(−

=

+−−−= ∑ ii

T

i

i

caXaXXf
�

�

�

�� 4 1010 ≤≤−
i

x 5364.10)4(21 −=
�

f

 19

 Fig. 4.)(Xf
�

of equation (22) for D = 2.

5.2.2 Application to Parameter Estimation for Frequency-Modulated (FM) Sound Waves

Frequency-modulated (FM) sound synthesis plays an important role in several modern music-systems.
This section describes an interesting application of the proposed DE algorithms to the optimization of
parameters of an FM synthesizer. A few related works that attempt to estimate parameters of the FM
synthesizer using the genetic algorithm can be found in [51, 52]. Here we introduce a system that can
automatically generate sounds similar to the target sounds. It consists of an FM synthesizer, a DE
optimizer, and a feature extractor. The system architecture is shown in Figure 5. The target sound is a
.wav file. The DE algorithm initializes a set of parameters and the FM synthesizer generates the
corresponding sounds. In the feature extraction step, the dissimilarities of features between the target
sound and synthesized sound are used to compute the fitness value. The process continues until
synthesized sounds become very similar to the target.

The specific instance of the problem discussed here involves determination of six real parameters:

},,,,,{ 332211 ωωω aaaX =
�

of the FM sound wave given by equation (24) for approximating it to

the sound wave given in (25) where 1002πθ = . The parameters are defined in the range [-6.4,

+6.35]. The formula for the estimated sound wave and the target sound wave may be given as:

)))..sin(...sin(...sin(.)(332211 θωθωθω tatataty ++= (24)

)))..9.4sin(.0.2..8.4sin(.5.1..0.5sin(.0.1)(0 θθθ tttty +−= (25)

Fig. 5. Architecture of the optimization system.

The goal is to minimize the sum of squared errors between the estimated sound and the target sound, as
given by (26). This problem involves a highly complex multi-modal function having strong epistasis
(interrelation among the variables), with optimum value 0.0.

 2
100

0
0))()(()(tytyXf

t

∑
=

−=
�

. (26)

Owing to the great difficulty of solving this problem with high accuracy without specific operators for
continuous optimization (like gradual GAs [52]), we stop the algorithm when the number of function

 FM Synthesizer

Feature Extraction/
Comparison

The Optimizer
(DE)

Best Parameter
Vector

 Target
 Sound

Estimated
Waveform

Fitness

 20

evaluations exceeds 105. As in the previous experiments, here also the runs of the competing DE
variants start with the same initial population.

5.3 Algorithms for Comparison

At first four versions of the proposed DEGL algorithm (with different schedules for changing the
weight factor w) are compared with the DE/target-to-best/1/bin. These four versions are referred to as
DEGL/LIW (DEGL with Linearly Increasing Weight factor), DEGL/EIW (DEGL with Exponential
Increasing Weight factor), DEGL/RandW (DEGL with Random Weight factor) and DEGL/SAW
(DEGL with Self Adaptive Weight factor). We included a DEGL algorithm with a fixed value of w for
all the vectors in this comparative study. For this scheme we choose w = 0.5 (which provides equal
importance to both local and global mutation schemes and appears to be the best performer as
compared to other fixed values of w varying between 0.1 to 1.0 in steps of 0.1). The reason for
including this scheme is to illustrate the effectiveness of the time-varying or adaptive weight factor
over a fixed weight factor. In order to investigate the effect of the explorative mutation operator, the
local-only DEGL (with w = 0) was also taken into account in the comparative study.

Simulations were carried out to obtain a comparative performance analysis of DEGL/SAW (that
appears to be the best performing algorithm from the first set of experiments) with respect to: (a)
DE/rand/1/bin [1] (b) DE/target-to-best/1/bin [19] (c) DE/rand/1/either-or [3] (d) SADE [28] and (e)
NSDE [31]. Among the competitors, the first two belong to the classical DE family of Storn and Price.
The DE/rand/1/bin algorithm was chosen because of its wide popularity in solving numerical
optimization or engineering problems [3].

5.4 Initial Population and Method of Initialization

For all the contestant algorithms we used the same population size, which is 10 times the dimension D
of the problem. To make the comparison fair, the populations for all the DE variants (over all problems
tested) were initialized using the same random seeds. Fogel and Beyer [53] have shown that the typical
method of symmetric initialization, used to compare evolutionary computations can give false
impressions of relative performance. In many comparative experiments, the initial population is
uniformly distributed about the entire search space which is usually defined to be symmetric about the
origin. In addition, many of the test functions are crafted to have optima at or near the origin, including
the test functions for this study. A uniform distribution of initial population members has two potential
biases for such functions. In this work we have adopted an asymmetrical initialization procedure
following the work reported in [54]. The procedure limits the initial process to just a portion of the
feasible search space (as shown in the third column of Table 4), which is a region defined to be half the
distance from the maximum point along each axis back toward the origin. Consequently, as the number
of dimensions is increased, the volume of the initialization space in the asymmetric initialization
procedure decreases exponentially as compared to that of the symmetric initialization (whose limits
are provided in Table 4).

For the spread spectrum radar code design problem, each variable is randomly initialized in the interval

]2,0[π . The search was kept confined in this region. On the other hand, for the FMS problem, the

initialization range of each of the six variables was kept at [0, 6.35], while the search was constricted
in the region [-6.4, 6.35] for all the variables.

6 Numerical Results and Discussions

6.1 Comparison of Different DEGL Schemes

In this section we compare the performance of six variants of the proposed DEGL algorithm (with
different strategies for tuning the weight factor w) and the DE/target-to-best/1 scheme, which uses only
a global neighborhood and may be seen as a special case of the DEGL with w = 1 and βα = . All the

 21

seven contestant algorithms in this section use the same population size, the same intial population,
and the same stopping criterion (i.e. the same number of maximum FEs). Here the results are shown
for D = 100 and each run of an algorithm is continued upto 5,000,000 FEs. Since all the algorithms
have the same population size (D⋅10), this corresponds to a maximum of approximately 5000
generations for each problem.

In the self-adaptive scheme (DEGL/SAW) for adjusting w, the weight-factor of each vector was
randomly initialized, using a uniform distribution, and constrained within [0.05, 0.95]. This range gave
fairly good results with DEGL/SAW algorithm.

We choose the crossover rate Cr = 0.9, scale factors α = β = F = 0.8. After some experimentation we
find that a neighborhood size approximately equal to 10% of the population size provides reasonably
accurate results for DEGL over nearly all the problems we study here. Hence we stick to a 10%
neighborhood size everywhere in this comparative study for DEGL. Section 6.5 presents a detailed
discussion of the effect of the neighborhood size on DEGL’s performance.

The mean and the standard deviation (within parentheses) of the best-of-run values for 50 independent
runs of each of the five contestant algorithms are presented in Table 5 for the six hardest benchmark
functions functions f8 to f13 (each in 100 dimensions) and also for the three composite functions CF1 to
CF3 (each in 10 dimensions), taken from the list of CEC’05 benchmarks [48]. The best solution in
each case has been shown in bold. Final accuracy results for all the algorithms studied here have been
reported with precision as recorded by the IEEE Standard for Binary Floating-Point Arithmetic (IEEE
754). Results for relatively easier benchmarks follow a similar trend and have not been included in
order to save space.

Table 5. Average and the standard deviation of the best-of-run solution for 50 independent runs and the success
rate tested on functions f8 to f13 and composite functions CF1 to CF3.

Mean Best Value

(Standard Deviation)

func
tions

DE/target-to-
best/1/

bin

DEGL with
fixed w = 0.5

DEGL with
w = 0

DEGL/LI DEGL/EI

DEGL
/RandW

DEGL/SAW
(Cr = 0.9)

f8

-3.94382e+04
(5.83e-06)

-3.8756e+04
(7.00e-06)

-3.5621e+04
(8.58e-06)

-4.03634e+04
(3.81e-05)

-4.18436e+04
(5.22e-05)

-4.09039e+04
(8.39e-06)

-4.18983e+04

(6.98e-06)

f9 8.38673e-02
(5.06e-03)

8.35525e-02
(4.96e-02)

5.1215e-03
(3.81e-03)

3.46138e-06
(5.91e-07)

2.90833e-06
(5.91e-06)

8.93821e-21
(5.4342e-18)

1.7728e-26

(3.88e-25)

f10

6.76249e-01
(4.27e-01)

6.65735e-01
(7.07e-01)

2.09364e-01
(4.38e-01)

5.48844e-02
(1.68e-01)

3.93270e-04
(3.28e-02)

3.00895e-10
(7.16e-07)

8.52742e-17

(1.365e-15)
f11

5.27284e-05
(4.63e-07)

9.07997e-06
(9.02e-05)

6.46925e-06
(3.49e-08)

8.63652e-06
(1.02e-04)

4.82634e-06
(3.63e-06)

8.92369e-12
(6.02e-13)

4.11464e-15

(6.02e-16)

f12

5.21919e-02
(2.94e-04)

5.25646e-03
(7.15e-06)

5.25646e-03
(7.15e-06)

4.34325e-04
(3.69e-05)

5.13084e-03
(3.59e-04)

4.74317e-04
(4.05e-05)

3.00496e-18

(4.82e-17)

f13

2.30179e+01
(4.38e-01)

1.35424e+01
(3.67e-02)

1.77582e+01
(6.33e-04)

-4.86485e-01
(1.08e-10)

-1.00864e+00
(1.44e-05)

-1.10554e+00
(6.98e-02)

-1.14282e+00

(9.02e-05)

CF1 7.35430e+02
(1.546e+02)

7.36630e+02
(4.326e+01)

7.37321e+02
(7.235e+01)

6.98553e+02
(1.236e+02)

6.98661e+02
(2.123e+02)

7.847894e+02
(3.353e+02)

6.19227e+02

(6.8341e+01)

CF2 8.65593e+02
(2.541e+02)

8.54723e+02
(2.482e+01)

8.34774e+02
(1.554e+01)

7.82114e+02
(1.231e+02)

6.70442e+02
(1.133e+02)

6.40562e+02
(2.643e+02)

5.60543e+02

(9.7837e+01)

CF3 9.73340e+02
(3.221e+02)

9.13774e+02
(5.689e+02)

9.18563e+02
(4.663e+01)

1.12504e+03
(2.236e+02)

8.16728e+02
(2.836e+02)

8.41423e+02
(2.643e+02)

6.74823e+02

(5.8471e+01)

From Table 5, it is interesting to see that there are always one or more versions of DEGL that
outperform the standard DE/target-to-best/1/bin scheme. This reflects the effectiveness of the
incorporation of the hybrid mutation operator in DE. We also note that in all the cases the time-varying
weight-factors outperform the schemes with fixed weight-factor. It is interesting to see that DEGL with
a fixed w for all vectors yields final accuracies very close to that produced by the DE/target-to-
best/1/bin scheme. However, performance of the local-only DEGL with w = 0 remains comparable to
DEGL with w = 0.5 but poorer than the three other DEGL schemes with time-varying weight factor.
Most of the runs of DEGL with w = 0 fail to converge very near to the global optima within the
prescribed number of FEs due to its sluggish behavior during the final stages of the search. This

 22

suggests that a judicious trade-off between the explorative and the exploitative mutation operators is
the key to the success of the search-dynamics of DEGL. The self-adaptive DEGL/SAW scheme
exhibited very good performance over all the test problems, indicating the ability of DEGL to capture
the dynamics of the problem under test and determine the proper weight-factor. In Figure 6 the
evolution of the weight-factor over successive generations has been shown for the best vector of the
median run of DEGL/SAW over functions f8 - f13. The standard deviations have also been plotted at the
sampled generations in the same figure.

Very interestingly, Figure 6 indicates that the general tendency of the evolutionary learning is at first a
decrease of the weight factor (favoring exploration at earlier stages) and then increasing the weight
factor towards a high value (favoring exploitation at later stages of the search).

In the following sections we report results of comparison between DEGL/SAW and other state-of-the-
art DE variants. We exclude the other variants of DEGL to save space and also considering the fact
that DEGL/SAW outperformed all other schemes of controlling the weight factor over the selected
test-suite.

(a) Variation of w for DEGL/SAW over functions f8 to f10

(b) Variation of w for DEGL/SAW over functions f11 to f13

Fig. 6. Self-adaptation characteristics of the best vector of median run for the DEGL/SAW scheme.

 23

6.2 Comparison of DEGL/SAW with State-of-the-art DE-Variants

In this section, we compare DEGL/SAW with five other DE variants mentioned in Section 5.3. The
comparative study focuses on four important aspects of all the competitor algorithms: (a) The quality
of the final solutions produced by each algorithm, irrespective of the computational time it consumes,
(b) The speed of convergence measured in terms of the number of FEs required by an algorithm to
reach a predefined threshold value of the objective function, (c) the frequency of hitting the optima (or
success rate) measured in terms of the number of runs of an algorithm that converge to a threshold
value within a predetermined number of FEs, and (d) the issue of scalability, i.e. how the performance
of an algorithm changes with the growth of the search-space dimensionality.

The parametric setup for DEGL was kept same as before. For DE/rand/1/bin and DE/target-to-
best/1/bin we have taken F = 0.8, Cr = 0.9, and DNP ⋅= 10 . In the case of DE/rand/1/either-or, we
took 4.0=Fp [3]. For NSDE and SADE, the best set of parameters was employed from the relevant

literature ([31] and [28] respectively). Once set, the same parameters were used over all the tested
problems and no further hand tuning was allowed for any of the algorithms.

6.2.1 Comparison of Quality of the Final Solution

To judge the accuracy of different DE variants, we first let each of them run for a very long time over
every benchmark function, until the number of FEs exceeds a given upper limit (which was fixed
depending on the complexity of the problem). The mean and the standard deviation (within
parentheses) of the best-of-run values for 50 independent runs of each of the six algorithms are
presented in Tables 6, 7, and 8. Missing standard deviation values in any result table in this paper
indicate zero standard deviation. Although the experiments were conducted for D = 25, 50, 75, and 100
for functions f1 to f13, we report here results for 25 and 100 dimensions in order to save space. Please
note that the omitted results follow a similar trend as those reported in Tables 6, 7, and 8.

Since all the algorithms start with the same initial population over each problem instance, we used
paired t-tests to compare the means of the results produced by best and the second best algorithms
(with respect to their final accuracies). The t-tests are quite popular among researchers in evolutionary
computing and they are fairly robust to violations of a Gaussian distribution with large number of
samples like 50 [55]. In the 10-th columns of Tables 6, 7, and 8 we report the statistical significance
level of the difference of the means of best two algorithms. Note that here ‘+’ indicates the t value of
49 degrees of freedom is significant at a 0.05 level of significance by two-tailed test, ‘.’ means the
difference of means is not statistically significant and ‘NA’ stands for Not Applicable, covering cases
for which two or more algorithms achieve the best accuracy results.

 24

Table 6. Average and the standard deviation of the best-of-run solution for 50 independent runs and the success
rate tested on f1 to f8

A close inspection of Tables 6 - 8 indicates that the performance of the proposed DEGL/SAW
algorithm has remained clearly and consistently superior to that of the two classical DE schemes
(DE/rand/1/bin and DE/target-to-best/1/bin) as well as the three state-of-the-art DE variants. One may
note from Tables 6 and 7 that for a few relatively simpler test-functions like the Sphere (f1), Schwefel’s
problem 2.22 (f2), 25-dimensional Step function (f6), generalized Rastrigin’s function (f9), generalized
Griewank’s function (f11) and the Shekel’s family function f22, most of the algorithms end up with
almost equal accuracy. Substantial performance differences however, are noticed for the rest of the
more challenging benchmark functions and especially for functions with higher dimensions like 100.
In the case of the multi-modal functions f8 to f13, the three state-of-the-art DE variants
(DE/rand/1/either-or, SADE, and NSDE) and DEGL/SAW outperformed the two classical DE
algorithms: DE/rand/1/bin and DE/target-to-best/1/bin. The quality of the solutions produced by the
SADE, DE/target-to-best/1/bin, and NSDE algorithm is close to that of the DEGL in a few cases (e.g.
the 25-dimensional f12, f14, and the 2-dimensional f16 and f18 functions).

 It is interesting to see that out of the 34 benchmark instances, in 25 cases DEGL outperforms its
nearest competitor in a statistically significant fashion. In three cases (f1 with D=100, f8 with D=25, f9
with D=100, and f12 with D=25) DE/rand/1/either-or achieved best average accuracy beating DEGL,
which remained the second best algorithm. Paired t-tests, however, confirm that the difference of their
means is not statistically significant for f1 and f9 in 100 dimensions.

Mean Best Value
(Standard Deviation)

Func
tion

Dim

Max
FEs

DE/rand/1
/bin

DE/target-
to-best/1/

bin

DE/rand/1/
either-or

SADE [27] NSDE [30]
DEGL/
SAW

Statistical
Significance

25 5×105 6.8594e-29

(4.984e-23)
5.7093e-25
(2.109e-19)

7.3294e-36
(5.394e-34)

4.0398e-35
(3.905e-32)

9.5462e-35
(3.009e-34)

8.7845e-37

(3.823e-35)
.

f1

100 5×106 8.4783e-24
(4.664e-22)

2.5693e-23
(3.746e-21)

4.9382e-26

(4.9382e-25)

5.8472e-24
(3.8271e-23)

8.3812e-23
(3.925e-25)

3.6712e-25
(4.736e-23)

.

25 5×105 7.5462e-29
(6.731e-29)

5.7362e-25
(4.837e-10

7.4723e-31
(2.736e-34)

8.3392e-26
(4.837e-28)

8.9437e-30
(1.003e-30)

4.9392e-36

(3.928e-34)
+ f2

100 5×106 1.6687e-09
(6.77e-10)

3.5273e-06
(1.68e-08)

6.2827e-13
(1.91e-15)

2.6595e-12
(3.36e-14)

9.1395e-10
(3.36e-10)

6.9982e-14

(1.34e-16)
+

25 5×105 4.9283e-11
(2.03e-11)

6.2713e-09
(4.82e-10)

5.8463e-24
(4.737e-24)

4.2761e-14
(3.87e-14)

3.0610e-09
(4.22e-10)

1.2094e-26

(3.827e-25)
+

f3
100 5×106 6.5712e-10

(2.91e-10)
5.6125e-10
(3.22e-12)

3.4315e-11
(5.07e-12)

4.5641e-10
(5.29e-13)

7.3412e-10
(6.12e-10)

5.8832e-13

(3.06e-16)
+

25 5×105 8.3611e-14
(6.37e-13)

5.3711e-10
(9.03e-09)

1.6281e-14
(3.42e-13)

3.0229e-14
(1.37e-15)

2.0936e-11
(1.09e-08)

4.9932e-15

(1.18e-14)
+

f4 100 5×106 3.0095e-12
(3.26e-11)

3.0005e-08
(3.69e-09)

9.4442e-13
(3.29e-14)

3.7001e-11
(1.08e-13)

6.0927e-09
(4.45e-08)

3.5677e-14

(4.55e-13)
+

25 5×105 9.8372e-23
(4.837e-24)

3.0345e-10
(3.69e-09)

4.9372e-25
(3.726e-21)

5.6472e-26

(9.367e-24)

2.6473e-25
(4.536e-25)

6.8948e-25
(4.361e-26)

.
f5
 100 5×106 8.4511e-05

(2.748e-05)
2.6183e-01
(1.329e-03)

8.5462e-23
(4.635e-23)

8.6471e-25
(3.782e-24)

5.9208e-08
(2.03e-09)

1.5463e-25

(7.301e-22)
.

25 5×105 6.0938e-32
(9.362e-40)

7.6473e-41
(3.827e-37)

2.6839e-45
(3.837e-43)

1.6729e-36
(2.637e-32)

4.0361e-28
(2.949e-34)

9.5627e-48

(2.732e-45)
+

f6
100 5×106 3.2387e-14

(2.67e-09)
4.0102e-12
(3.85e-13)

8.3026e-15
(5.51e-16)

6.4897e-21
(3.938e-19)

5.8924e-15
(6.00e-13)

9.4826e-22

(7.483e-24)
+

25 5×105 4.9391e-03
(5.92e-04)

9.0982e-03
(2.08e-04)

6.9207e-04
(4.26e-06)

3.7552e-02
(9.02e-03)

4.3482e-03
(6.50e-04)

1.0549e-07

(2.33e-06)
+

f7
100 5×106 2.8731e-02

(2.33e-02)
3.3921e-02
(3.32e-02)

4.3332e-03
(5.76e-02)

5.9281e-02
(4.31e-03)

9.8263e-02
(2.90e-03)

6.9921e-06

(4.56e-05)
+

25 5×105 -1.0182e+04
(2.83e-04)

-1.0236e+04
(3.81e-05)

-1.0475e+04

(2.27e-06)

-1.0475e+04

(2.27e-06)

-1.1472e+04
(2.91e-03)

-1.0475e+04

(3.77e-03)
NA

f8
100 5×106 -4.18315e+04

(2.83e-04)
-3.9382e+04
(5.83e-06)

-4.18445e+04
(5.22e-05)

-4.18091e+04
(2.49e-06)

-4.18091e+04
(2.49e-06)

-4.18983e+04

(6.98e-06)
.

 25

Table 7. Average and the standard deviation of the best-of-run solution for 50 independent runs tested on f9 to f21

Table 8. Average and the standard deviation of the best-of-run solution for 50 independent runs tested on

composite functions CF1 to CF3 taken from the CEC’05 benchmarks

As long as Cr < 1, DEGL will not be rotationally invariant, i.e., its performance will depend on the
orientation of the coordinate system in which vectors are evaluated [3]. Since the composite functions
CF1, CF2 and CF3 are rotated in nature, we also solve them using DEGL/SAW with Cr = 1. Table 5
shows that this rotationally invariant version of DEGL performs significantly better on the composite
test functions as compared to the DEGL with Cr = 0.9. However, the performance over the 21
traditional benchmarks (which are unrotated) is nearly the same for both the versions. In order to save
space we have not shown the results of DEGL/SAW with Cr = 1 in Tables 6 and 7.

Mean Best Value
(Standard Deviation)

Func

 D

Max
FEs

DE/rand/1/bin
DE/target-to-

best/1/
bin

DE/rand/1/
either-or

SADE [27] NSDE [30]
DEGL/
SAW

Statistical
Significance

25 5×105 1.0453e-03

(8.04e-02)
9.5278e-01
(4.72e-01)

1.7109e-23
(2.726e-24)

6.7381e-24
(3.728e-21)

4.8392e-21
(8.872e-20)

5.8492e-25

(5.333e-27)
.

f9
 100 5×106 2.1121e-02

(4.86e-03)
6.76249e-01
(4.27e-01)

8.4719e-23

(9.36e-22)

5.8824e-21
(4.83e-20)

5.5732e-05
(5.93e-04)

1.7728e-22
(3.88e-20)

.

25 5×105 4.1902e-08
(3.36e-08)

9.8035e-03
(6.80e-03)

6.9437e-15
(4.86e-15)

7.8343e-15
(2.85e-15)

5.9749e-10
(3.2231e-04)

5.9825e-23

(1.00e-22)
+

f10 100 5×106 7.6687e-05
(6.767e-05)

6.76249e-01
(4.237e-01)

6.9398e-13
(4.852e-13)

3.0665e-12
(5.125e-13)

4.1232e-05
(7.496e-06)

8.52742e-17

(1.365e-15)
+

25 5×105 6.8318e-22
(3.837e-25)

7.94504e-07
(8.03e-08)

3.0905e-34
(7.462e-34)

1.8274e-28
(7.682e-29)

7.9318e-26
(3.774e-28)

2.9931e-36

(4.736e-35)
+

f11
100 5×106 2.1962e-10

(8.45e-11)
5.27284e-05
(4.63e-07)

3.2928e-12
(2.77e-13)

8.9569e-13
(1.02e-14)

5.0392e-10
(4.29e-08)

4.11464e-15

(6.02e-16)
+

25 5×105 7.0931e-16
(6.22e-15)

2.8962e-13
(2.25e-10)

5.1469e-32

(4.22e-29)

9.3718e-24
(6.193e-28)

5.8471e-21
(3.728e-21)

7.2094e-27
(4.838e-28)

+

f12 100 5×106 4.2455e-10
(2.96e-09)

5.21919e-02
(2.94e-04)

2.9137e-15
(4.30e-16)

2.8417e-15
(1.45e-14)

4.8923e-12
(8.45e-13)

3.00496e-18

(4.82e-17)
+

25 5×105 -1.12836e+00
(4.46e-08)

-4.86485e-01
(1.08e-10)

-1.1382e+00
(3.29e-10)

-1.14280e+00
(3.85e-07)

-1.14276e+00
(3.44e-09)

-1.14282e+00

(5.81e-06)
+

f13

100 5×106 2.0621e-02

(5.58e-03)
5.81493e-01
(1.08e-02)

2.19321e+00
(3.32e-01)

-1.1014e+00
(6.98e-03)

-1.10266e+00
(7.84e-05)

-1.14282e+00

(9.02e-05)
+

f14 2 5×105 9.9813292e-01
(5.42e-10)

9.9860553e-01
(4.26e-03)

9.9800390e-01

(1.13e-16)

9.9800884e-01
(1.93e-18)

9.9860346e-01
(1.07e-02)

9.9800390e-01

(1.15e-18)
NA

f15 4 5×105 4.0361420e-04
(2.81e-04)

4.8242655e-04
(6.41e-05)

3.6734442e-04
(5.13e-05)

3.7044472e-04
(9.82e-07)

3.7320963e-04
(4.33e-03)

3.7041849e-04

(2.11e-09)
+

f16 2 5×105 -1.029922e+00
(1.82e-08)

-1.031149e+00
(2.44e-08)

-1.031242e+00
(4.98e-06)

-1.031630e+00

(9.73e-12)

-1.031630e+00

(3.33e-10)

-1.031630e+00

(4.28e-10)
NA

f17 2 5×105 3.9788959e-01
(6.39e-06)

3.9789793e-01
(6.28e-07)

3.9788915e-01
(6.82e-06)

3.9788783e-01
(2.68e-06)

3.9788392e-01
(4.09e-06)

3.9788170e-01

(8. 54e-04)
.

f18 2 5×105 3.0834435e+00
(4.73e-01)

3.146090e+00
(5.83e-01)

3.000000e+00

3.000000e+00

3.000000e+00

3.000000e+00 NA

f19 2 5×105 -1.0042985e+01
(4.32e-05)

-6.840054e+00
(3.87e+00)

-1.010974e+01
(2.67e-05)

-1.015050e+01
(4.59e-04)

-1.014876e+01
(3.57e-03)

-1.015323e+01

(7.34e-08)
+

f20 2 5×105 -1.0400382e+01
(8.54e-10)

-1.040073e+01
(4.53e-08)

-1.040068e+01
(9.24e-10)

-1.040189e+01
(6.94e-05)

-1.040089e+01
(3.00e-08)

-1.040295e+01

(5.93e-04)
+

f21 2 5×105 -1.0536082e+01
(2.87e-03)

-7.023436e+01
(4.78e-05)

-1.0474381e+01
(6.88e-03)

-1.0536234e+01
(2.46e-06)

-1.023436e+01
(2.72e-02)

-1.053641e+01

(3.90e-08)
+

Mean Best Value
(Standard Deviation)

Func

D

Max
FEs

DE/rand/1
/bin

DE/target-to-
best/1/

bin

DE/rand/1/
either-or

SADE [27] NSDE [30]
DEGL/
SAW

(Cr = 0.9)

DEGL/
SAW

(Cr = 1)

Statistical

Significance

CF1 10 5×106 6.400300e+02
(2.3428e+02)

7.92834e+02
(3.0922e+02)

6.280932e+02
(2.0703e+02)

5.334983e+02
(3.9672e+01)

6.230469e+02
(4.5297e+01)

6.19227e+02
(6.8341e+01)

5.03826e+02

(4.0995e+01)
+

CF2 10 5×106 6.340356e+02
(2.6635e+02)

7.993241e+02
(4.6723e+02)

6.157323e+02
(9.8836e+01)

5.15284e+02
(2.0784e+02)

7.198302e+02
(4.8735e+02)

7.60543e+02
(9.7837e+01)

4.18542e+02

(8.9984e+01)
+

CF3 10 5×106 8.56392e+02
(9.4863e+01)

1.12873e+03
(6.7394e+01)

7.48427e+02
(5.8473e+01)

7.88492e+02
(4.4342e+01)

8.93824e+02
(3.8764e+01)

6.74823e+02
(5.8471e+01)

4.76239e+02

(3.7842e+01)
+

 26

6.2.2 Comparison of the Convergence Speed and Success Rate

In order to compare the speeds of different algorithms, we select a threshold value of the objective
function for each benchmark problem. For functions with minima at 0, this threshold is at 10-20. To
obtain an unbiased comparative performance, for other functions, this value is chosen to be somewhat
larger than the minimum objective function value found by each algorithm in Tables 6, 7, and 8. We
run each algorithm on a function and stop as soon as the best fitness value determined by the algorithm
falls below the predefined threshold. Then we note the number of FEs the algorithm takes. A lower
number of FEs corresponds to a faster algorithm. Tables 9, 10, and 11 report the number of runs (out of
50) that managed to find the optimum solution (within the given tolerance) as well as the mean number
of FEs and standard deviations (within parenthesis) required by the algorithms to converge within the
prescribed threshold value. Entries marked as 0 indicate that no runs of the corresponding algorithm
converged below the threshold objective function value. Missing values of standard deviation in these
tables also indicate a zero standard deviation.

Tables 6 and 9 indicate that, not only does DEGL/SAW yield the most accurate results for nearly all
the benchmark problems, but it does so consuming the least amount of computational time. In addition,
the number of runs that converge below a pre-specified cut-off value is also greatest for DEGL over
most of the benchmark problems covered here. This indicates the higher robustness (i.e. the ability to
produce similar results over repeated runs on a single problem) of the algorithm as compared to its
other four competitors. Usually in the community of stochastic search algorithms, robust search is
weighted over the highest possible convergence rate [56, 57].

 27

Table 9. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to
the cut-off fitness over the successful runs for functions f8 to f11.

 No. of successful runs, mean no. of FEs and (standard deviation) required to converge to
the prescribed threshold fitness

Func
tion

D

Threshold
objective
function

value
DE/rand/1

/bin

DE/target-to-
best/1/

bin

DE/rand/1
/either-or

SADE [28] NSDE [31]
DEGL/
SAW

25 1.00e-20 50,
 109372.5
(4773.28)

50,
376421.20
(10983.46)

50,
98204.24
(2942.87)

50,
104982.64
(5182.67)

50,
105727.80
(3427.57)

50,

91935.40

(3888.45)

f1

100 1.00e-20 50,
687322.24
(12153.67)

50,
1033567.40
(58391.56)

50,

403922.56

(3814.25)

50,
738720.84
(28731.88)

50,
565382.24
(2827.56)

50,
498521.54
(10832.41)

25 1.00e-20 50,
 266371.40
(31923.45)

50,
417382.80
(23221.45)

50,
198342.22
(3421.68)

50,
306742.28
(18534.55)

50,
300371.48
(9034.26)

50,

 157234.76

(4451.72)

f2

100 1.00e-20 13,
2034583.46
(18235.48)

6,
2935411.45
(21893.56)

28,
1062744.69
(44583.41)

23,
1257362.57
(3417.34)

20,
1782336.10
(36710.05)

34,

 978357.83

(23727.45)
25 1.00e-20 12,

298341.67
(24376.27)

5,
378392.20
(34621.22)

50,
 123682.54
(63827.06)

16,
296473.93
(27268.45)

7,
363986.82
(52741.78)

50,

 110528.68

(13873.51)

f3

100 1.00e-20 13,
2638224.33
(57398.21)

10,
 4562312.70
(17372.68)

15,
2745218.47
(37123.69)

14,
2696359.51
(14225.47)

13,
2671982.93
(46188.26)

18,

2063728.48

(27351.57)

25 1.00e-20 16,
376291.47
(12836.48)

8,
467262.25
(26111.78)

19,
309309.52
(17829.46)

17,
292478.83
(8372.58)

11,
 408291.79
(26721.77)

21,

294812.82

(36173.52)

f4
100 1.00e-20 19,

3174782.17
(17283.49)

3,
4453782.67
(18253.58)

22,
3228379.27
(4824.81)

17,
3139382.38
(33728.42)

5,
4140835.40
(22338.86)

25,

2263976.44

(28371.46)

25 1.00e-20 50,
356253.38
(82732.33)

17,
478290.91
(57263.72)

50,
 315633.92
(47192.57)

50,

267319.74

(23556.24)

50,
 299831.26
(48382.57)

50,
338279.08
(28846.37)

f5

100 1.00e-20 1,
3398272

0 50,
3067263.78
(56723.83)

50,
2844738.62
(66729.38)

3,
4563742.33
(128123.57)

50,

2709313.82

(12338.11)

25 1.00e-20 50,
189367.38
(83412.84)

50,
132676.28
(6769.48)

50,
122845.64
(7378.36)

50,
173490.18
(7638.46)

50,
235177.72
(13223.94)

50,

96832.24

(4631.66)

f6

100 1.00e-20 18,
2357827.59
(33253.68)

16,
3098277.26
(83921.47)

20,
2299868.50
(27632.58)

47,
1824359.69
(27733.61)

25,
3622719.24
(47378.19)

50,

1238461.98

(36278.64)

25 1.00e-20 0 0 2,
467236.50
(43827.83)

0 0 4,

417823.25

(27192.82)

f7

100 1.00e-20 0 0 1,
3689267.48

0 0 3,

3163563.67

(78282.58)

25 -1.0410e
+04

12,
19817.50

(8723.837)

17,
13039.65
(336.378)

50,
12410.04

(1201.278)

50,
9887.50

(822.281)

32,
37847.82
(4431.90)

50,

9492.64

(871. 76)

f8

100 -4.1800e
+04

3,
359834.33
(4353.825)

1,
 51729

13,
133282.73
(5362.366)

25,
363291.80
(2338.944)

20,
2178283.50
(24332.78)

35,

 39928.45

(231.627)

25 1.00e-20 19,
 345328.18
(41128.91)

13,
46843.92

(34521.372)

50,
 330272.74
(3642.289)

50,
195823.88
(4249.392)

44,
345654.73
(326.84)

50,

 87148.34

(1325.72)

f9

100 1.00e-20 5,
1840322.80
(3852.196)

2,
 2022275.50
(27327.24)

50,
838932.48
(23677.66)

50,
744938.28

(34147.928)

16,
3290384.57
(53209.58)

50,

539282.72

(26547.09)

25 1.00e-20 14,
226816.89
(44721.76)

4,
412675.25
(16834.37)

34,
 238372.74
(32325.67)

32,
236290.86
(15533.08)

26,
287812.83
(14039.54)

50,

224883.78

(13212.87)

f10

100 1.00e-20 13,
1873625.56
(29123.902)

2,
4486372.50
(98273.57)

15,
1782210.66
(72233.371)

13,
1065920.64
(24383.71)

7,
2082983.84
(81744.84)

27,

 925628.73

(7823.28)

25 1.00e-20 50,
333948.52

(12314.821)

6,
 356061.52
(11300.97)

50,
225092.84
(12123.19)

50,
316382.04
(35338.83)

50,
369283.71
(45478.88)

50,

196258.22

(14235.83)

f11

100 1.00e-20 26,
1887635.65
(44612.34)

12,
2833416.96
(17218.06)

29,
2633782.74
(10217.26)

34,
1936287.62
(14235.37)

27,
2235653.56
(30362.67)

43,

1627092.58

(11217.31)

 28

Table 10. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to
the cut-off fitness over the successful runs for functions f12 to f21.

Table 11. No. of successful runs, mean no. of FEs and standard deviation (in parentheses) required to converge to

the cut-off fitness over the successful runs for composite functions CF1 to CF3.

The convergence characteristics of seven difficult test functions are shown in Figure 7 in terms of the
fitness value of the median run of each algorithm. All the graphs except for the composite functions
CF1 to CF3 have been drawn for D = 100 dimensions. Convergence graphs for the composite
functions appear for D = 10 dimensions.

 No. of successful runs, mean no. of FEs and (standard deviation) required to
converge to the prescribed threshold fitness

Func

 D

Threshold
objective

function value DE/rand/1
/bin

DE/target-to-
best/1/

bin

DE/rand/1/
either-or

SADE [28]
NSDE
[31]

DEGL/
SAW

25 1.00e-20 35,
294584.44

(22563.378)

30,
3472185.67
(13382.229)

42,
209372.87
(12742.03)

50,
126574.64
(16833.89)

46,
478732.05,
(3884.04)

50,

150039.62

(4831.28)

f12

100 1.00e-20 8,
3122658.25
(62922.84)

5,
3908138.80
(13937.383)

23,
2664722.53
(47212.38)

20,
1637409.40
(18219.526)

10,
2673864.70
(53121.65)

27,

1436190.89

(13627. 82)

25 -1.1428e+00

13,
230372.52
(7313.297)

3,
428023.33

(84517.371)

26,
237639.09
(14573.96)

42,
213739.78

(12347.391)

24,
738742. 34
(24322.82)

48,

121940.72

(33398.90)

f13

100 -1.1428e+00

1,
3328426

0 0 14,
1702654.85
(21743.57)

25,
1283665.44
(9487.37)

28,

398493.74

(25134.38)

f14 2 9.9800390e
-01

19,
94233.57
(2312.57)

14,
89371.53
(1409.26)

46,
68392.37
(5231.48)

27,
84032.58
(3842.53)

15,
77362.94
(4437.28)

47,

67823.84

(3725.36)

f15 4 3.705e-04

0 0 13,
58935.28
(3822.72)

33,
68293.46
(2219.58)

20,
73821.05
(6319.48)

41,

65783.38

(1749.51)

f16 2 -1.03170e+00

32,
83920.68
(2124.56)

37,
98529.61
(1098.59)

27,
83782.79
(1271.47)

50,
77129.34
(3731.63)

50,
71036.28
(1211.48)

50,

67382.39

(1726.49)

f17 2 3.980e-01

41,
103273.57
(2231.68)

43,
79382.42
(907.31)

43,
75823.45
(3281.68)

38,
78939.37
(1325.46)

47,
84983.94
(2258.10)

49,

73727.83

(4308.58)

f18 2 3.00e+00

21,
67392.59
(3381.62)

23,
77539.42
(4839.86)

50,

89482.78

(3238.56)

50,

79035.28

(3381.98)

50,

80382.70

(419.49)

50,

69837.62

(1724.08)

f19 2 -1.01550e+01 23,
109372.48
(3341.67)

34,
98922.93
(3212.68)

44,
68672.70
(1332.67)

41,
67478.37
(2001.83)

37,
79820.42
(1692.78)

46,

58372.96

(3827.58)
f20 2 -1.04500e+01 35,

84721.07
(3412.39)

42,
107482.69
(10824.57)

48,
58373.47
(2221.680

47,
48372.83
(2294.83)

44,
85933.58
(3329.74)

50,

56098.08

(3187.44)

f21 2 -1.05500e+01 26,
86743.93
(6983.07)

30,
85999.67
(2901.83)

32,
84892.66
(2319.59)

46,
68492.69
(2326.09)

23,
100232.67
(3721.78)

49,

67583.93

(3317.58)

No. of successful runs, mean no. of FEs and (standard deviation) required to converge to the
prescribed threshold fitness

Func
D

Threshold
objective
function

value
DE/rand/1

/bin
DE/target-
to-best/1/

bin

DE/rand/1/
either-or

SADE [28] NSDE [31] DEGL/
SAW

(Cr = 0.9)

DEGL/
SAW

(Cr = 1)
CF1 10 8.10e+02 34,

2683073.04
(45214.48)

19,
3835238.75
(18183.95)

42,
637222.35
(39357. 23)

50,
1823847.64
(52932.821)

12,
624732.56

(35330.493)

36,
1707873.04
(13434.482)

50,

1645938.75

(18843.905)

CF2 10 8.10e+02 33,
530857.85
(13439.09)

21,
2539841.89
(87438.490)

25,
942325.40
(3173.74)

25,
818472.16
(7384.492)

37,
510932.79
(3438.473)

36,
1230857.85
(13139.409)

39,

83401.86

(5438.46)

CF3 10 1.20e+03 17,
3645817.50
(95823.83)

17,
4834039.65
(35336.78)

41,
1597232.03
(37811.28)

40,
196887.50
(12372.28)

24,
3139492.64
(54431.26)

45,
149817.56
(2339.37)

50,

913039.68

(3576.78)

 29

(a) Generalized Ackley’s Function (f10) (b) Generalized Griewnk’s Function (f11)

 (c) Generalized Rastrigin’s Function (f9) (d) Generalized Rosenbrock’s Function (f5)

(e) Composite Function CF1 (f) Composite Function CF2

 30

(g) Composite Function CF3

Fig. 7. Progress towards the optimum solution for median run of six algorithms over seven difficult test functions.

6.2.3 Scalability Comparison

Performance of most of the evolutionary algorithms (including DE and PSO) deteriorates with the
growth of the dimensionality of the search space. Increase of dimensions implies a rapid growth of the
hyper-volume of the search space and this in turn slows down the convergence speed of most of the
global optimizers. Here we show how the performance of the six DE variants scale against the growth
of dimensions from 25 to 100. Figure 8 shows the scalability of the six algorithms over four difficult
test functions - how the average computational cost (measured in number of FEs required to yield a
threshold fitness value) to find the solution varies with an increase in the dimensionality of the search
space.

We note that the computational cost of both DEGL/SAW and SADE (to yield a given accuracy)
increases most sluggishly with the search space dimensionality for the following test-functions: f5, f10,
f11, and f9.

(a) Generalized Ackley’s Function (f10) (b) Generalized Griewank’s Function (f11)

Search Space Dimensionality Search Space Dimensionality

 31

(c) Generalized Rastrigin’s Function (f9) (d) Generalized Rosenbrock’s Function (f5)

Fig. 8. Variation of mean number of FEs required for convergence to predefined threshold accuracy with increase

in dimensionality of the search space.

6.3 Comparison with other State-of-the-art Evolutionary Techniques

In this section we compare the performance of DEGL/SAW with that of four state-of-the-art
evolutionary and swarm-based optimization techniques, well-known as CPSO-H [38], IPOP-CMA-ES
[58], MA-S2 [59], and G3 with PCX [60]. Below we briefly describe each of these algorithms.

1) CPSO-H: van den Bergh and Engelbrecht proposed a Cooperative Particle Swarm Optimizer
(CPSO) in [36]. Although CPSO uses one-dimensional (1-D) swarms to search each dimension
separately, the results of these searches are integrated by a global swarm to significantly improve the
performance of the original PSO on multi-modal problems. The CPSO-H algorithm uses a hybrid
swarm, consisting of a maximally split cooperative swarm (D one-dimensional swarms for one D-
dimensional parameter vector) and a plain swarm. Both components employ identical values for the
acceleration coefficients (49.121 == CC) and the inertial factor ω decreasing linearly with time.

They use a maximum velocity maxV
�

clamped to the search domain [38].

2) IPOP-CMA-ES: CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [61, 62] is an
evolutionary strategy that uses informed mutation based on local structural information, but does not
directly bias its search motion toward other individuals of the population. Auger and Hansen have
recently proposed a restart CMA-ES [58], where the population size is increased (IPOP) for each
restart. By increasing the population size, the search characteristic becomes more global after each
restart. This variant is named as IPOP-CMA-ES.

3) MA-S2: Memetic Algorithms (MAs) [63, 64] are based on the hybridization of Genetic Algorithm
(GA) with Local Search (LS) techniques. In this study, MA-S2 [59] stands for an adaptive Meta-
Lamarckian learning-based MA that employs a stochastic approach (the biased roulette wheel strategy)
making use of the knowledge gained online to select a suitable local method with the GA.

4) G3 with PCX: The main research effort in the field of real parameter GA is more or less focussed
on the design of efficient recombination operators used to create offspring from parent solutions. Deb

et al. [60] proposed a generic parent-centric recombination scheme (PCX) and integrated it with a
steady state, elite preserving, scalable, and computationally fast population alteration model of the GA,
which they named the G3 (Generalized Generation Gap) model. Their results indicate that the G3
model with PCX can outperform many other existing GA models when tested on the standard
benchmark functions.

 32

We employ the best parametric set-up for all these algorithms as prescribed in their respective sources.
The mean and the standard deviation (within parentheses) of the best-of-run values of 50 independent
runs for each algorithm have been presented in Tables 12 and 13. In order to save space we report only
the hardest problem instances (multi-dimensional functions with D = 100) in these tables. The
algorithms compared in this section have different population sizes and also differ in their initial
population structure. Thus to test the statistical significance of the results, we used two-tailed unpaired
t tests between the two best algorithms. The results of t test have been indicated in the 9-th column of
Table 12 and 10-th column of Table 13. Note that here ‘+’ indicates the t value of 98 degrees of
freedom is significant within a 95% confidence interval by two-tailed test, ‘.’ means the difference of
means is not statistically significant and ‘NA’ stands for Not Applicable, covering cases in which two
or more algorithms achieve the best accuracy results.

These simulation results show that DEGL/SAW is superior to all the other algorithms in terms of the
average final accuracy over 12 cases reported in Table 12 and 2 cases in Table 13. DEGL/SAW yields
results comparable to two or more algorithms for 6 cases in Table 12. It is interesting to see that out of
the 12 cases in Table 12, where DEGL/SAW was able to beat all its contestant algorithms, for 9
instances the difference between the means of DEGL/SAW and its nearest competitor is statistically
significant. From Table 12, we find that CPSO-H was able to outperform DEGL/SAW (and all the
other contestants) over the 100-dimensional Schwefel’s problem 1.2 (f3) and IPOP-CMA-ES alone
achieved the greatest accuracy for the 100-dimensional generalized penalized function (f12) beating
DEGL/SAW. For f3, DEGL/SAW remained the third best algorithm (after CPSO-H and G3 with PCX)
while for the f12 function, it secured the second place in terms of final accuracy. However, the last
column of Table 12 shows the difference of means of DEGL/SAW and IPOP-CMA-ES is not

statistically significant in the case of the f12 function.

For lower dimensional multi-modal functions f14 to f21, almost all the algorithms end up with nearly
equal levels of final accuracy, f19 being an exception where DEGL/SAW appeared to perform
significantly better as compared to all other algorithms. For the higher dimensional and multi-modal
functions f8 to f13, however, CPSO-H and IPOP-CMA-ES remained as the toughest competitor of
DEGL/SAW. Note that over these functions DEGL/SAW remained statistically better as compared to
the MA-S2 algorithm, which also employs local search strategies in an adaptive fashion with GA.
Except for the generalized penalized function f12, DEGL/SAW met or beat the IPOP-CMA-ES over all
other multi-modal functions in 100 dimensions. The final accuracy provided by DEGL/SAW improves
significantly as compared to all other algorithms for three hardest uni-modal functions: the generalized
Rosenbrock’s function (f5), the discontinuous step function (f6), and the noisy quartic function (f7).

The convergence characteristics of the contestant algorithms over the six hardest test functions have
been shown in Figure 9 in terms of the objective function value of the median run of each algorithm.
For the step function, characterized by plateaus and discontinuity, DEGL/SAW maintained a steady
convergence rate that finally finished at the lowest objective function value, while the local search-
based MA-S2 showed a much slower convergence. Usually a local search method that relies on
geographical neighborhoods performs poorly on the step function because the algorithm mainly
searches in a relatively small local neighborhood. On the other hand, DEGL employs a geographically
randomized neighborhood structure (local only in the sense of vector indices), and the individuals can
make longer jumps enabling them to move from one plateau to a lower one with relative ease.

 33

Table 12. Average and standard deviation of the best-of-run solutions for 50 independent runs and the success
rate tested on f1 to f21

Table 13. Average and standard deviation of the best-of-run solutions for 50 independent runs tested on
composite functions CF1 to CF3 taken from the CEC’05 benchmarks

Mean Best Value
(Standard Deviation)

Func

D

Max
FEs
 CPSO-H

IPOP-CMA-
ES

MA-S2
G3 with

PCX
DEGL/SAW

Statistical
Significance

f1

100 5×106 6.5635e-22
(7.234e-28)

9.6853e-23
(7.232e-26)

7.5364e-22
(3.454e-25)

2.8002e-20
(6.467e-14)

8.3812e-23

(3.925e-25)
.

f2 100 5×106 7.4164e-08
(6.225e-07)

2.7429e-03
(1.648e-07)

6.2899e-04
(1.91e-15)

2.6595e-06
(3.36e-10)

9.1395e-10

(3.36e-10)
+

f3 100 5×106 3.5712e-23

(7.239e-22)

2.5358e-08
(1.923e-09)

8.0005e-07
(8.947e-05)

3.7659e-10
(2.596e-10)

9.7852e-10
(6.132e-08)

+

f4

100 5×106 6.5132e-13
(1.795e-16)

1. 7685e-12
(4.949e-06)

4.8865e-12
(2.209e-13)

7.4823e-13
(3.773e-09)

3.7068e-14

(1.08e-12)
.

f5

100 5×106 1.5041e-01
(9.423e-01)

6.0499e-22
(8.345e-24)

1.5639e-20
(2.700e-20)

5.7778e-18
(2.233e-19)

1.5463e-25

(7.301e-22)
+

f6

100 5×106 1.4532e-15
(1.713e-16)

2.1052e-20
(8.691e-21)

1.4455e-13
(3.938e-11)

7.0054e-17
(2.644e-14)

8.6493e-22

(8.483e-23)
+

f7

100 5×106 8.5829e-13
(1.492e-03)

2.9890e-03
(7.086e-01)

9.6648e-05
(2.331e-09)

1.7984e-02
(6.834e-03)

6.9921e-06

(4.56e-05)
+

f8

100 5×106 -4.0572e+04
(9.481e-06)

-4.18783e+04
(1.129e-04)

-4.18774e+04
(4.227e-05)

-4.03386e+04
(2.349e-05)

-4.18983e+04

(6.98e-06)
+

f9 100 5×106 1.7382e-01
(4.093e-02)

9.24702e-21
(4.324e-21)

7.32562e-04
(2.781e-05)

5.92381e-03
(3.779e-04)

1.7728e-22

(3.838e-23)
+

f10

100 5×106 1.7725e-12
(2.489e-13)

8.85280e-17
(7.638e-14)

3.71596e-09
(9.328e-08)

3.47432e-10
(7.146e-09)

3.52742e-17

(1.365e-15)
+

f11

100 5×106 2.5361e-02
(7.2281e-03)

3.67528e-14
(6.932e-14)

1.56794e-13
(3.6433e-09)

8.92369e-11
(8.157e-15)

4.11464e-15

(6.02e-16)
+

f12

100 5×106 4.2042e-10
(6.955e-11)

4.45366e-19

(3.634e-16)

2.75934e-09
(8.359e-06)

6.86492e-04
(8.035e-03)

8.00496e-19
(4.82e-17)

.

f13

100 5×106 -1.142822e+00

(9.472e-06)

-1.142822e+00

(1.342e-03)

-1.00864e+00
(1.44e-05)

-1.10967e+00
(8.345e-01)

-1.142823e+00

(9.032e-05)
NA

f14 2 5×106 9.9800390e-01

(7.228e-16)

9.9800390e-01

(2.673e-16)

9.9800400e-01
(9.373e-09)

9.9800390e-01

(1.138e-16)

9.9800390e-01

(1.15e-18)
NA

f15 4 5×106 3.706461e-04

(1.551e-06)
3.7041849e-04

(4.837e-10)

3.706851e-04
(2.558e-05)

4.156548e-04
(2.981e-04)

3.7041849e-04

(2.11e-09)
NA

f16 2 5×106 -1.031630e+00

(7.236e-11)

-1.031630e+00

(3.668e-11)

-1.031628e+00
(4.538e-08)

-1.031630e+00

(2.548e-09)

-1.031630e+00

(1.749e-10)
NA

f17 2 5×106 3.9788231e-01
(2.683e-06)

3.9788170e-01

(1.260e-08)

3.9788794e-01
(7.638e-06)

3.9788396e-01
(6.039e-06)

3.9788170e-01

(8. 544e-04)
NA

f18 2 5×106 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00 NA
f19 2 5×106 -1.015306e+00

(2.453e-06)
-1.015314e+01

(8.071e-07)
-1.015058e+01

(1.593e-06)
-1.014888e+01

(5.568e-01)
-1.015323e+01

(7.341e-08)
+

f20 2 5×106 -1.040236e+01
(3.116e-06)

-1.040293e+01
(7.974e-10)

-1.040125e+01
(1.944e-05)

-1.040089e+01
(3.00e-08)

-1.040295e+01

(5.923e-04)
.

f21 2 5×106 -1.053427e+01
(1.593e-08)

-1.053641e+01

(6.049e-07)

-1.053669e+01
(1.446e-03)

-1.023386e+01
(9.638e-02)

-1.053641e+01

(3.90e-08)
NA

Mean Best Value
(Standard Deviation)

Func

D

Max
FEs

CPSO-H
IPOP-CMA-

ES
MA-S2

G3 with
PCX

DEGL/
SAW

(Cr = 0.9)

DEGL/
SAW

(Cr = 1)

Statistical

Significance
CF1 10 5×106 5.24167e+02

(1.046e+01)
3.83592e+02

(1.236e+02)

1.98661e+03
(2.123e+02)

1.847894e+03
(3.353e+02)

6.19227e+02
(6.8341e+01)

5.03826e+02
(4.0995e+01)

+

CF2 10 5×106 9.23762e+02
(6.718e+01)

6.82114e+02
(1.8469e+01)

1.53459e+03
(1.133e+02)

1.49463e+04
(7.846e+02)

7.60543e+02
(9.7837e+01)

4.18542e+02

(8.9984e+01)
+

CF3 10 5×106 7.58269e+02
(9.462e+02)

5.12504e+02
(2.586e+02)

7.16728e+02
(2.836e+02)

1.91423e+03
(2.643e+02)

6.74823e+02
(5.8471e+01)

4.76239e+02

(3.7842e+01)
+

 34

(a) Step Function (f6) (b) Generalized Rastrigin’s Function (f9)

(c) Generalized Ackley’s Function (f10) (d) Generalized Griewnk’s Function (f11)

(e) Composite Function CF1 (f) Composite Function CF2

 35

 (g) Composite Function CF3

Fig. 9. Convergence characteristics for median run of five algorithms over seven difficult benchmark functions.

Figure 9 reveals that for Ackley (f10), Rastrigin (f9), and Griewank (f11), as well as harder composite
functions CF1 and CF2, initially CPSO-H and IPOP-CMA-ES converge at the quickest rate among all
the algorithms. However, in the neighborhood of the global optima, DEGL/SAW overtakes both of
them, attaining greater final accuracy. The composite function CF1 appears as an exception to this
trend (that is also exhibited by the convergence graphs of other functions, which were omitted to save
space), where the convergence rate of CMA-ES remained higher than DEGL/SAW until the maximum
number of FEs were reached.

6.4 Comparative Performance over Real-life Optimization Problems

This section investigates the performance of the six competitive DE-variants over two real-world
optimization problems viz. the spread spectrum radar poly-phase code design problem and the sound
frequency modulator synthesis problem. Both problems have been briefly described earlier in Section
5.2.

In Table 14, we show the mean and the standard deviation (within parentheses) of the best-of-run
values for 30 independent runs of each of the six algorithms over the two most difficult instances of the
radar poly-phase code design problem (for dimensions D = 19 and D = 20). Table 15 reports the results
of the same experiments performed over the FM synthesizer problem. Figures 9 and 10 graphically
present the rate of convergence of the DE-variants for these two problems (graphs in Figure 9 have
been shown for 20 dimensions for the radar code design problem). The 8-th column in Table 14 and
the 7-th column in Table 15 indicate the statistical significance level obtained from a paired t test
between the best and the next-to-best performing algorithms in each case.

 36

Table 14. Average and standard deviation (in parentheses) of the best-of-run solutions for 30 runs over the spread
spectrum radar poly-phase code design problem (number of dimensions D = 19 and D = 30). For all cases each

algorithm was run up to 5×106 FEs.

Table 15. Average and standard deviation (in parentheses) of the best-of-run solutions for 50 runs of six

algorithms on the frequency modulator synthesis problem. Each algorithm was run for 105 FEs.

Fig.10. Progress to the optimum solution for spread spectrum radar poly-phase code problem (D = 20).

Fig.11. Progress to the optimum solution for the FMS problem.

Mean best-of-run solution
(Std Dev)

D DE/rand/1
/bin

DE/target-to-
best/1/

bin

DE/rand/1/
either-or

SADE [28] NSDE [31]
DEGL/
SAW

Statistical
Significance

19 7.4849e-01

(8.93e-03)
7.6535e-01
(5.93e-04)

7.5834e-01
(9.56e-04)

7.5932e-01
(3.88e-05)

7.6094e+01
(4.72e-03)

7.4439e-01

(5.84e-04)
.

20 8.5746e-01
(4.83e-03)

9.3534e-01
(4.55e-02)

8.3982e-01
(3.98e-03)

8.3453e-01
(6.53e-04)

8.4283e-01
(3.44e-02)

8.0304e-01

(2.73e-03)
+

Mean best-of-run solution
(Std Deviation)

DE/rand/1
/bin

DE/target-to-
best/1/

bin

DE/rand/1/
either-or

SADE NSDE
DEGL/
SAW

Statistical
Significance

1.7484e-01
(4.268e-02)

1.8255e+00
(1.158e-01)

3.8523e-04
(2.995e-04)

7.8354e-02
(5.8254e-03)

9.4559e-03
(6.924e-01)

4.8152e-09

(6.2639e-08)
+

 37

Tables 14 and 15 show that DEGL/SAW outperforms all the other DE-variants in terms of final
accuracy over two instances of the radar poly-phase code design problem as well as the FMS problem.

6.5 Selection of the Neighborhood Size

The proper selection of the neighborhood’s size (equal to 12 +k , where k is the neighborhood radius)
in DEGL affects the trade-off between exploitation and exploration. For solving any given
optimization problem, this selection remains an open problem. In practice, it is up to the practitioner
and it is based solely on his/her experience. Some empirical guidelines may, however, be provided
based on the fact that if the neighborhood size is large (near the population size), then because of the
overlapping of the neighborhoods of successive vectors, neighborhood-best of a number of vectors can
be similar to the globally best vector in the entire population. This again increases the attraction of
most of the vectors towards a specific point in the search space and results in loss of the explorative
power of the algorithm. Our experiments suggest that a neighborhood size that is above 40% of the
population size makes the performance of DEGL comparable to that of the DE/target-to-best/1/bin.
Again too small a neighborhood runs the risk of losing diversity of the population, as the difference
vector in the local mutation model (equation (14)) may become too small. This is due to the fact that
the vectors belonging to a small neighborhood may quickly become very similar to each other. We
empirically observe that for DNP ⋅= 10 , the overall performance of the algorithm is not very sensitive
to the neighborhood size varying between 10% and 20% of NP. Other choices for the population size
NP and the corresponding radius of the neighborhood are topics of future research.

Below we provide the overall success rate of the DEGL/SAW algorithm for neighborhood size varying
from 5% to 70% of NP, over 100-dimensional multi-modal functions f10 and f11. Since both the
functions have their optima at the origin (0), we plot the percentage of runs that successfully yielded a

final accuracy below 1510− for different neighborhood sizes. We relaxed the threshold objective

function value from 2010− , so that at least one run of DEGL for all neighborhood sizes may converge
below the threshold value.

Fig. 12. Variation of the overall success rate of DEGL/SAW with increasing neighborhood size (for 100-
dimensional functions f10 and f11). Neighborhood sizes are indicated in the legend.

Thorough experimentation with all the test problems shows that a neighborhood size of around 10%
provides reasonably accurate results with high success rates over most of the benchmark problems
covered here.

 38

 6.6 Correlation Between the Neighborhood Size and Weight Factor

Both the neighborhood size and the weight factor w are related to the balancing of the explorative and
exploitative tendencies of DEGL. Establishment of any theoretical correlation between these two
parameters remains an interesting problem for future research. In this section we provide a discussion
on such correlation, based on our empirical results on the benchmark functions.

If we keep w constant throughout, then for neighborhood sizes (12 +k , where k is the neighborhood
radius) varying between approximately 15% to 25% of NP, reasonably good accuracy is achieved with

55.045.0 << w over most of the uni- and multi-modal benchmarks. Larger values of w in [0.7, 1.0],
result in marginally better results compared to DE/target-to-best/1/bin but comparable or worse than
one or more DE-variants tested here. However, for still smaller neighborhood size varying between 5%
to 15% of NP, the optimal range of w for best accuracy is observed in [0.6, 0.75]. For neighborhood
sizes roughly above 65% of the population size NP none of the time-varying weight factor schemes
(described in Section 4.4) provided significant improvement of DEGL over DE/target-to-best/1/bin.
This is expected because when the neighborhood size approaches the population size, the global and
local mutation models do not differ significantly with respect to their best vectors and the role of
weight factor becomes less prominent.

In the case when w is made self-adaptive, if the neighborhood-size is below 30% of NP, DEGL
exhibits an evolutionary learning strategy that initially promotes exploration of the feasible search
volume, but during the later stages of search favors exploitation and thus aids quick convergence to the
global optimum. This trend has also been shown in Figure 6 for various benchmark functions.
However, we observe that if the neighborhood size is increased beyond 30%, the evolutionary learning
gradually becomes erratic and for neighborhood sizes beyond 60% of NP, the self-adaptive
characteristics of w become almost random over generations for most of the benchmarks. This
tendency has been shown in Figure 13 for the generalized Ackley’s function f10. This figure indicates
that if the neighborhood size approaches NP, the adaptation mechanisms of w can hardly guide the
search . We intend to investigate these facts more thoroghly in a future communication.

Fig.13. Self-adaptation characteristics of the best vector of the DEGL/SAW scheme on the generalized Ackley’s
function (f10) for different neighborhood sizes.

 39

7. Conclusions and Future Work

In this study we proposed a hybrid DE-type mutation/recombination operator that is a linear
combination of two other mutation/recombination operators (an explorative and an exploitive
operator), in an attempt to balance their effects. The new operator depends on a user-defined weight
factor w . To circumvent the problem of determining a proper value of w for each problem, we
proposed six different schemes for selecting and tuning this parameter. Among these, the self-adaptive
weight scheme performed best on most of the benchmark functions tested.

The neighborhood-based DE mutation, equipped with self-adaptive weight factor, attempts to make a
balanced use of the exploration and exploitation abilities of the search mechanism and is therefore
more likely to avoid false or premature convergence in many cases. An extensive performance
comparison with five significant DE variants and four other state-of-the-art evolutionary optimization
techniques indicated that the proposed approaches enhance DE’s ability to accurately locate solutions
in the search space. The use of the self-adaptive mutation scheme can lead to reliable optimization
since it alleviates the problems generated by poor trade-off between the explorative and exploitative
tendencies of the algorithm, such as decreased rate of convergence, or even divergence and premature
saturation.

This, however, does not lead us to claim that the DEGL family of algorithms may outperform their
contestants over every possible objective function since it is impossible to model all possible
complexities of real-life optimization problems with the limited test-suite that we used for testing the
algorithms. In addition, the performance of the competitor DE variants may also be improved by
blending other mutation strategies with judicious parameter tuning, a topic of future research. The
conclusion we can draw at this point is that DE with the suggested modifications can serve as an
attractive alternative for optimizing a wide variety of objective functions.

The present work can be extended in several directions. Future research may focus on providing some
empirical or theoretical guidelines for selecting the neighborhood size over different types of
optimization problems. The effect of other neighborhood topologies (star-shaped, wheel-shaped, fully
connected, etc.) on the performance of DEGL should be investigated theoretically. It would be
interesting to study the performance of the DEGL family when the various control parameters (NP, F,
and Cr) are self-adapted following the ideas of the SADE algorithm [28].

Acknowledgements: We are grateful to the editor-in-chief, the anonymous associate editor and the
anonymous reviewers for their very detailed comments and criticisms that helped a lot to improve the
presentation of the paper.

References

1. R. Storn and K. V. Price, “Differential evolution - A simple and efficient adaptive scheme for global
optimization over continuous spaces”, Technical Report TR-95-012, ICSI,
http://http.icsi.berkeley.edu/~storn/litera.html, 1995.

2. ____, “Differential Evolution – a simple and efficient heuristic for global optimization over continuous
spaces”, Journal of Global Optimization, 11(4) 341–359, 1997.

3. R. Storn, K. V. Price, and J. Lampinen, Differential Evolution - A Practical Approach to Global

Optimization, Springer, Berlin, 2005.
4. T. Rogalsky, R.W. Derksen, and S. Kocabiyik, “Differential evolution in aerodynamic optimization”, In:

Proc. of 46th Annual Conf. of Canadian Aeronautics and Space Institute, pp. 29-36, 1999.
5. R. Joshi and A.C. Sanderson, “Minimal representation multi-sensor fusion using differential evolution”,

IEEE Trans. Systems, Man, and Cybernetics, Part A, vol. 29, no. 1, pp. 63-76, 1999.
6. S. Das and A. Konar, “Design of two dimensional IIR filters with modern search heuristics: a

comparative study”, International Journal of Computational Intelligence and Applications, World
Scientific Press, vol. 6, No. 3, 2006.

 40

7. F-S. Wang and H-J. Jang, “Parameter estimation of a bio-reaction model by hybrid differential
evolution,” in Proc. of the IEEE Congress on Evolutionary Computation 2000, vol.1, pp. 410-417.
IEEE, Piscataway, NJ, USA, 2000.

8. J. Lampinen, “A bibliography of differential evolution algorithm,” Technical Report. Lappeenranta
University of Technology, Department of Information Technology, Laboratory of Information
Processing, 1999. Available via Internet http://www.lut.fi/~jlampine/debiblio.htm.

9. M. Omran, A. P. Engelbrecht, A. Salman, “Differential evolution methods for unsupervised image
classification,” Proc. Seventh Congress on Evolutionary Computation (CEC-2005), Vol. 2, pp. 966- 973
IEEE Press, 2005.

10. S. Das, A. Abraham, and A. Konar, “Adaptive clustering using improved differential evolution
algorithm,” IEEE Transactions on Systems, Man and Cybernetics – Part A, IEEE Press, USA, vol. 38,
issue 1, pp. 218-237, 2008.

11. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor,
1975.

12. J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. conf. Neural Networks,
pp.1942-1948, 1995.

13. J. Vesterstrøm and R. Thomson, “A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems,” in Proc. Sixth Congress

on Evolutionary Computation (CEC-2004), IEEE Press, 2004.
14. U. K. Chakraborty (Ed.) Advances in Differential Evolution, Springer-Verlag, Heidelberg, 2008.
15. J. Lampinen and I. Zelinka, “On stagnation of the differential evolution algorithm,” in: Pavel Ošmera,

(ed.) Proc. of MENDEL 2000, 6th International Mendel Conference on Soft Computing, pp. 76 – 83,
June 7–9. 2000, Brno, Czech Republic.

16. J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter optimization with differential evolution,”
in Proc. of IEEE Congress on Evolutionary Computation (CEC-2005), vol. 1, pp. 506 – 513, IEEE
Press, 2005.

17. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello, “A comparative study of differential
evolution variants for global optimization,” in Genetic and Evolutionary Computation Conference

(GECCO 2006), pp. 485–492, 2006.
18. U. K. Chakraborty, S. Das, and A. Konar, “Differential evolution with local neighborhood,” in IEEE

Congress on Evolutionary Computation (CEC-2006), IEEE Press, pp. 7395–7402, 2006.
19. K. V. Price, An Introduction to Differential Evolution, in D. Corne, M. Dorigo, and V. Glover, (eds.)

New Ideas in Optimization, pages 293 - 298. Mc Graw-Hill, UK, 1999.
20. R. Gamperle, S. D. Muller, and A. Koumoutsakos, “Parameter study for differential evolution,” in

WSEAS NNA-FSFS-EC 2002, Interlaken, Switzerland, Feb. 11-15, 2002.
21. J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm”, In Soft computing-A Fusion

of Foundations, Methodologies and Applications, vol. 9 no. 6, p.448-462, 2005.
22. A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation

for global numerical optimization", IEEE Transactions on Evolutionary Computations, DOI:
10.1109/TEVC.2008.927706, 2009.

23. D. Zaharie, “Control of population diversity and adaptation in differential evolution algorithms,” In D.
Matousek, P. Osmera (eds.), Proc. of MENDEL 2003, 9th International Conference on Soft Computing,
Brno, Czech Republic, pp. 41-46, June 2003.

24. D. Zaharie and D. Petcu, “Adaptive pareto differential evolution and its parallelization,” Proc. of 5th

International Conference on Parallel Processing and Applied Mathematics, Czestochowa, Poland, vol.
3019, pp. 261 – 268, Sept. 2003.

25. H. Abbass, “The self-adaptive pareto differential evolution algorithm,” in Proc. of the 2002 Congress on

Evolutionary Computation, 831-836, 2002.
26. M. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive differential evolution, computational

intelligence and security,” PT 1, Proceedings Lecture Notes In Artificial Intelligence 3801: 192-199,
2005.

27. J. Teo, “Exploring dynamic self-adaptive populations in differential evolution”, in Soft Computing - A

Fusion of Foundations, Methodologies and Applications, 2006. DOI: 10.1007/s00500-005-0537-1.

 41

28. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-adapting Control parameters in
differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on

Evolutionary Computation, Vol. 10, Issue 6, pp. 646 – 657, 2006.
29. S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential evolution schemes for faster

global search,” ACM-SIGEVO Proceedings of GECCO, Washington D.C., pp. 991-998, June 2005.
30. S. Rahnamayan, H.R. Tizhoosh, and M. M. A. Salama, “Opposition-Based Differential Evolution,”

IEEE Transactions on Evolutionary Computation, Vol. 12, Issue 1, pp. 64 – 79, 2008..
31. Z. Yang, J. He, and X. Yao, Making a Difference to Differential Evolution, in Advances in

Metaheuristics for Hard Optimization, Z. Michalewicz and P. Siarry (eds.), pp 415-432, Springer, 2007.
32. Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, Springer, Berlin, 1999.
33. Z. Yang, K. Tang and X. Yao, "Large Scale Evolutionary Optimization Using Cooperative

Coevolution," Information Sciences, Vol. 178, Issue 15, pp. 2985-2999, 2008.
34. Z. Yang, K. Tang and X. Yao, "Self-adaptive differential evolution with neighborhood search”, in Proc.

IEEE Congress on Evolutionary Computation (CEC-2008), Hong Kong, 1110-1116, 2008.
35. N. Noman and H. Iba, “Enhancing differential evolution performance with local search for high

dimensional function optimization,” in Proc. of the 2005 Conference on Genetic and Evolutionary

Computation, pp. 967–974, June 2005.
36. _____, “Accelerating Differential Evolution Using an Adaptive Local Search”, IEEE Transactions on

Evolutionary Computation, Vol. 12, Issue 1, pp. 107 – 125, 2008.
37. K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” in

Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of the Int. Conf. Comput.

Meth. Sci. Eng. (ICCMSE 2004), VSP International Science Publishers, Zeist, the Netherlands 868–873,
2004.

38. F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,”
IEEE Transactions of Evolutionary Computation., Vol. 8, pp. 225–239, Jun. 2004.

39. J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive Learning Particle Swarm
Optimizer for Global Optimization of Multimodal Functions,” IEEE Transactions of Evolutionary

Computation., Vol. 10, Issue 3, pp. 281–295, 2006.
40. W.-J. Zhang and X.-F. Xie, “DEPSO: hybrid particle swarm with differential evolution operator,” in

IEEE International Conference on Systems, Man and Cybernetics, Vol.4, pp. 3816 -3821, 2003.
(http://citeseer.ist.psu.edu/635224.html)

41. S. Das, A. Konar, and U. K. Chakraborty, “An improved particle swarm optimization algorithm for
faster global search,” in ACM-SIGEVO Proceedings of Genetic and Evolutionary Computation

Conference (GECCO-2005), Washington DC, June, 2005.
42. R. Mendes and J. Kennedy, “The fully informed particle swarm: simpler, maybe better,” IEEE

Transactions of Evolutionary Computation, Vol. 8, No. 3, 2004.
43. K. Zielinski, D. Peters, and R. Laur, “Run time analysis regarding stopping criteria for differential

evolution and particle swarm optimization,” in Proc. of the 1st International Conference on

Experiments/Process/System Modelling/Simulation/Optimization, Athens, Greece, (2005).
44. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading,

Massachusetts, 1983.
45. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, first edition, MIT Press and

McGraw-Hill, 1990.
46. P. Collet, J. Louchet, and E. Lutton, “Issues on the optimization of evolutionary algorithms code,” in

Proc. of the 2002 Congress on Evolutionary Computation (CEC’02), Honolulu, HI, USA, 2002.
47. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on

Evolutionary Computation, 3(2), 82-102, July 1999.
48. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, “Problem

definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,”
Technical Report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report
#2005005, IIT Kanpur, India.

49. Y. W. Shang and Y. H. Qiu, “A note on the extended Rosenbrock function”, Evolutionary Computation,
vol. 14, no. 1, pp. 119-126, 2006.

 42

50. N. Mladenović, J. Petrovic, V. Kovacevic-Vujicic, and M. Cangalovic, “Solving spread-spectrum radar
polyphase code design problem by tabu search and variable neighborhood search,” European Journal of

Operational Research, 153, 389-399, 2003.
51. A. Horner, J. Beauchamp, and L. Haken, “Genetic algorithms and their application to FM matching

synthesis,” Comput. Music J., vol. 17, pp. 17-29, 1993.
52. F. Herrera and M. Lozano, “Gradual distributed real-coded genetic algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 4, no. 1, pp. 43–62, (2000).
53. D. Fogel and H-.G. Beyer, “A note on the empirical evaluation of intermediate recombination,”

Evolutionary Computation, 3 (4), pp. 491-495, 1995.
54. P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: Philosophy and the

performance difference,” Lecture Notes in Computer Science (vol. 1447), Proc. of 7th International

Conference on. Evolutionary Programming – Evolutionary Programming VII, pp. 84-89, 1998.
55. B. Flury, A First Course in Multivariate Statistics, Springer. 28, (1997).
56. A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE

Transactions on Evolutionary Computation, vol.3, no. 2, pp. 124-141, 1999.
57. A. Konar, Computational Intelligence: Principles, Techniques, and Applications, Springer, 2005.
58. A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing population size,” IEEE

Congress on Evolutionary Computation (CEC 2005), pp. 1769- 1776, 2005.
59. Y.-S. Ong, and A. J. Keane, “Meta-lamarckian learning in memetic algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 8, no. 2, pp. 99–110, 2004.
60. K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolutionary algorithm for real-parameter

optimization,” Evolutionary Computation, 10(4), pp. 371 – 395, 2002.
61. N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,”

Evolutionary Computation, 9(2), pp.159-195, 2001.
62. N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions in evolution strategies:

the covariance matrix adaptation,” in Proc. of the 1996 IEEE Conference on Evolutionary Computation

(ICEC ’96), pp. 312–317, 1996.
63. W. Hart, N. Krasnogor, and J. Smith, (Eds.), Recent Advances in Memetic Algorithms, Springer, Berlin,

Heidelberg, New York, 2004.
64. N. Krasnogor and J. Smith, “A tutorial for competent memetic algorithms: model, taxonomy, and design

issues,” IEEE Transactions on Evolutionary Computation, 9 (5): 474-488, 2005.

