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Abstract- In the present work, we propose a new variant of 
basic DE algorithm called CMDE-G which uses Cauchy mutation 
(CM) operator. In this algorithm, at the end of every generation, 

CM is applied as a local search mechanism to explore the 
neighborhood of the best individual in the population. The 
performance of CMDE-G algorithm is analyzed on a set of 10 
standard benchmark problems and four nontraditional 

composite functions. Simulation results show that the proposed 
algorithm helps in improving the solution quality besides 
maintaining a good convergence rate. 

Keywords-Differential Evolution, mutation, cauchy 
distribution, local search. 

I. INTRODUCTION 

Differential Evolution (DE), an optimization technique, is 
an exceptionally simple and easy to use evolutionary strategy. 
It is significantly faster and robust at numerical optimization 
and is more likely to fmd a function's true global optimum [1]. 
Despite having several attractive features, practical experiences 
shows that DE sometimes does not perform up to the 
expectations. Like most of the population based search 
techniques the driving force behind the success of DE is the 
balance between the exploration (diversification) and 
exploitation (intensification) processes. If these two are not 
well defmed than problems like premature convergence or 
stagnation of population may take place. 

Several modifications have been made in the structure of 
basic DE to improve its performance. Some interesting 
modifications include parameter adaption strategy for DE by 
Zaharie [2], Abbas [3] proposed a self adaptive crossover rate 
for multiobjective optimization problems, Omran et al. [4] 
introduced a self adaptive scaling factor parameter F, Brest et 
al. [5] proposed SADE, which encoded control parameters F 
and Cr into the individuals and evolved their values by using 
two new probabilities. Teo [6] proposed an attempt at self
adapting the population size parameter in addition to self
adapting crossover and mutation rates. Yang et al. [7] proposed 
a self adaptive differential evolution algorithm with 
neighborhood search (SaNSDE). SaNSDE proposes three self
adaptive strategies: self adaptive choice of the mutation 
strategy between two alternatives, self-adaptation of the scale 
factor F, and self-adaptation of the crossover rate Cr. Qin et al. 
[8] proposed a Self-adaptive DE algorithm (SaDE), where the 
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choice of learning strategy and the two control parameters F 
and CR are not required to be pre-defmed. 

In [9] and [10], Pant et al. suggested new mutation 
strategies based on Laplace probability distribution and 
Quadratic Interpolation respectively. Several developments in 
DE algorithm design and application can be found in [11]. In 
continuation to the techniques of improving the performance of 
DE, in the present study we propose a modified version of DE 
called CMDE-G. In CMDE-G Cauchy mutation is not added 
just to induce a small perturbation in the population but is 
included to provide a local search effect. 

The remaining of the paper is organized as follows: 
Sections II and III explain the original DE and the proposed 
CMDE-G algorithms respectively. In section IV, experimental 
settings and benchmark problems are given; the numerical 
results are analyzed in section V. Finally the paper concludes 
with Section VI. 

II. DIFFERENTIAL EVOLUTION 

In DE, a population of potential solutions within an n
dimensional search space, a fixed number of vectors, are 
randomly initialized and then evolved over time to explore the 
search space and locate the minima of the objective function. 
At each iteration, called generation, new vectors are generated 
by the combination of vectors randomly chosen from the 
current population (mutation). The out coming vectors are then 
mixed with a predetermined target vector to produce a trial 
vector. Finally, the trial vector is accepted for the next 
generation if and only if it yields a reduction in the value of the 
objective function. This last operator is referred to as a 
selection. 

DE shares a common terminology of selection, crossover 
and mutation operators with GA however it is the application 
of these operators that make DE different from GA; while, in 
GA crossover plays a significant role, it is the mutation 
operator which affects the working of DE [12]. 

The working of basic DE may be described as follows: 

For a D-dimensional search space, each target vector X;,g , a 
mutant vector is generated by 

(1) 
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where 'i,r2,r3 E {1,2, .... ,NP} are randomly chosen 
integers, must be different from each other and also different 
from the running index i. F (>0) is a scaling factor which 
controls the amplification of the differential 
evolution (xr g - xr g ) . In order to increase the diversity of 

2' 3' 
the perturbed parameter vectors, crossover is introduced [13]. 
The parent vector is mixed with the mutated vector to produce 
a trial vectoruji,g+! , 

{Vj,i,G+l if randj � Cr v j = k (2) U j,i,G+l = x . . otherwise j,I,G 

where j = 1,2, ...... , D; randj E [0,1]; CR is the crossover 
constant takes values in the range [0, 1] 
andjrand E (1,2, ..... ,D) is the randomly chosen index. 

Selection is the step to choose the vector between the target 
vector and the trial vector with the aim of creating an individual 
for the next generation. 

III. CAUCHY MUTATED DIFFERENTIAL EVOLUTION 

The use of mutation operation is not new to the field of 
evolutionary algorithms. Its main aim is to introduce a small 
perturbation in the population from time to time so as to 
maintain its diversity. Most of the times the mutation operation 
is applied according to some fixed probabilistic rule. Also the 
number of times mutation will take place is also predefmed. In 
the past few years mutation operations based on different 
probability distributions (like Normal, Gaussian, and Cauchy 
etc) have become quite popular. The present study attempts to 
use the Cauchy Mutation operator as a local search strategy. 

Cauchy Mutated Differential Evolution (CMDE-G) starts 
like the basic DE algorithm using the same mutation equation 
as given in the previous section to generate the perturbed 
mutant vector. The process of generating the trial vector and 
selecting the fitter candidate for the next generation are also 
same as that of basic DE algorithm. Once the selection process 
is complete i.e. at the end of every iteration we search the 
neighborhood of the best (or global best) particle say Xbesl with 
the CM operator. If after mutation the solution quality is 
improved, then it is applied again to see if the solution can be 
improved any further. This process continues till we keep 
getting better solution. In case there is no improvement in the 
solution, then the algorithm moves to the next iteration. 

At the end of every iteration, mutation is defmed as: 

(3) 

Where Xbesl is the global best particle, C is the Cauchy 
distributed random number and rl, r2 E {1,2, .... , NP} are 
randomly chosen integers, different from each other and also 
different from the global best particle. The flowchart of 
CMDE-G algorithm is given in Fig. 1. 

IV. EXPERIMENTAL SETTINGS AND BENCHMARK PROBLEMS 

In order to make a fair comparison of DE and CMDE-G 
algorithms, we fixed the same seed for random number 
generation so that the initial population is same for both the 
algorithms. The population size is taken as 100 for all the test 
problems. The crossover rate and scaling factor F are fixed at 
0.2 and 0.5 respectively. For each algorithm, the maximum 
number of iterations allowed was set to 5000 and the error goal 
was set as 1 *e-04. A total of 30 runs for each experimental 
setting were conducted and the average fitness along with the 
average number of function evaluations (NFE), time taken and 
number of generations (GNE) of the best solutions throughout 
the run were recorded. The algorithms were programmed using 
Developer C++ and were executed on a Pentium IV PC. 

)[0 

Initialize population size, crossover 
rate aud scaling factor 

Apply mutation, crossover and selection 

Select the global best particle, x...= 

Apply Cauchy Mutation to Xb"" and 
evaluate its fitness 

Figure l. Flowchart of CMDE-G algorithm 

Yes 

In order to check the compatibility of the proposed CMDE
G algorithm we have tested it on a suite of 10 benchmark 
problems (given in Table I) and 4 nontraditional composite 
functions [14]. The test bed comprises of a variety of problems 
ranging from a simple spherical function to highly multimodal 
functions with several local and global optima. The four 
composite functions F4, Fj, F5 and F6, taken from CEC 2008 
benchmarking problems [14], are here marked as CFj, CF2, 
CF3 and CF4 respectively. All these functions are scalable, 
shifted and multi-modal functions containing a large number of 
local optima except CF2• CF2 is a unimodal function. The 
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global optimum of both CF] is ftx*) = -330, CF2 is ftx*) = -
450, CF3 is ftx*) = -180 and that for CF4 is ftx*) = -140. For 
more details on composite functions and other benchmark 
problems of similar type the interested reader may please refer 
to [14]. All the test problems are tested for two different 
dimensions 25 and 50. 

V. NUMERICAL RESULTS AND DISCUSSION 

A. Analysis of traditional benchmark problems 
1) Performance Analysis 1: The proposed CMDE-G is 

compared with basic DE on traditional benchmark problems 
by using the standard performance metrics like average fitness 
function value, standard deviation, average number of function 
evaluations (NFE) and CPU time (in sec) etc. the 
corresponding results for dimensions 25 and 50 are given in 
Tables II and III respectively. 

From Table II, we can see that CMDE-G is either superior 
or at par with basic DE for all the test cases in comparison of 
all the performance measures. If we compare the performance 
measures one by one then from the comparison of average 
fitness function value it can be seen that CMDE-G gave better 
result than DE in 8 test cases out of 10 cases tried. For the 
remaining two test cases,14 and 16, both algorithms gave same 
results. The total NFE taken by basic DE for solving the 10 
benchmark problems is 1138640 while with CMDE-G it is 
957926.2 showing that there is an improvement is around 16%. 
Likewise an improvement in average CPU time is around 19%. 
However the success rate for both the algorithms is 90%. 

From Table III, where the results are recorded for 
dimension 50, once again we can see the better performance of 
the proposed CMDE-G algorithms. Here we can see that 
CMDE-G outperformed the basic DE in 9 out of 10 test 
problems in terms of average fitness function value. The total 
number of function evaluations comes out to be 1521134 for 
CMDE-G in comparison to 1781363 as obtained by DE, 
showing an improvement of around 15%. The total time taken 
by CMDE-G is 173.4whereas the total time taken by DE is 
198.32 (an improvement of 13%). Also, in terms of total 
numbers of generations, the performance of CMDE-G is better 
than basic DE for problems of dimension 25 and 50. 
Convergence curves of selected benchmark problems are 
illustrated in Figures 2 and 3. 

2) Performance Analysis II: Performance Index: To 
further compare the consolidated performance of CMDE-G 
with original DE with respect to success rate and average 
number of function evaluations of successful runs both, the 
value of performance index (PI) [15] is computed. This index 
gives a weighted importance to the success rate and the 
average number of function evaluations of successful runs. 

The value of this performance index for a computational 
algorithm under comparison is given by 

PI =.l 't (kl at + k2a� + k3a� ) 
N i=1 

. Sri 
where a: = - . ; 

Tr' 

. --. lifSr' > 0 {Miffi . 
a� = Af" 

o if Sri = 0 

if Sri> 0 

if Sri = 0 

i = 1,2, .... ,Np 

Sri 
= Number of successful runs of lh problem 

Tri = Total number of runs Oflh problem 

Mfi = Minimum of average number of function evaluations 
of successful runs used by all algorithms in obtaining the 
solution of lh problem 

Afi = Average number of function evaluations of successful 
runs used by an algorithm in obtaining the solution of lh 
problem 

Mti 
= Minimum of average time used by all algorithms in 

obtaining the solution of lh problem 

At i = Average computational time used by an algorithm in 
obtaining the solution of lh problem 

N = Total number of problems analyzed. p 

kl ,k2and k3(k1 +k2 +k3 =1 andO�kl>k2,k3 �l) are the 

weights assigned to success rate and average number of 
function evaluations of successful runs, respectively. From 
above defmition it is clear that PI is a function of kb k2 and k3• 
Since, kJ + k2 + k3 = 1, one of ki' i = 1,2,3 could be eliminated 
to reduce the number of dependent variables from the 
expression of PI. But it is still difficult to analyze the behavior 
of PI, because the surface plots of PI for DE and CMDE-G are 
overlapping and it is difficult to visualize them. So, we adopt 
the same methodology as given in [15] i.e., equal weights are 
assigned to two terms at a time in the PI expression. This way 
PI becomes a function of one variable. The resultant cases are 
as follows 

1-W 
kl =W,k2 =k3 =-

2
-,0�W�1 

1-W 
k2 =W,kl =k3 =-

2
-,0�W�1 

1-W 
k3 =W,kl =k2 =-

2
-,0�W�1 

The PI is obtained for DE and CMDE-G for all the 
benchmark problems and is shown in Figure 4 -6. It is clear 
that the proposed CMDE-G outperforms the DE. 
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TABLE I NUMERICAL BENCHMARK PROBLEMS 
Function Definition 

n 2 Ji(X) = L(xi - lOcos(21lXi)+IO) 
i=1 

n 2 h(X) = LXi 
i=1 

1 n-I 2 n-I x· h(x) = -- L xi + L COS(,J.l )+1 
4000i=0 i=O 1 + 1 

n-I 2 f4(X) = L LXi +1I2J 
i=<J 

n-i 4 Is (x) = ( L (i + l)x i ) + rand[O,I] i =O 

f6(x) = - £ Xi sin(�) 
i=1 

hex) = 20 + e- 20 exp(-O.2 1 n 2 -LXi ) 
ni=1 
1 n 

- exp( -L COS(21lXi » 
ni=1 

1l n-l 
f8(X)=-{lOsin2(�I)+ L(Yi _1)2[1+lOsin2(Yi+I1l)] 

n i=l 
2 n 

+(Yn -I) }+ Lu(xi,10,100,4) 
i=1 

n-I 
f9(x) = (O.l){ sin2(3JIX1)+ L « Xi -1)2(1 +sin2(31Ixi+l))) 

i=1 
n-I 

+ (Xn _1)2 (l + sin 2 (21lXn») + L U(Xi ,10,100,4) 

n . 2 Jio(x) = LlXi 
i=1 

_nF 

- (IV DE-G 
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Range Min.Value 

[-5.12,5.12] 0 

[-5.12,5.12] 0 

[-600,600] 0 

[-100,100] 0 

[-1.28,1.28] 0 

[-500,500] -418.9829*n 

[-32,32] 0 

[-50,50] 0 

[-50,50] 0 

[-5.12,5.12] 0 

-� DE 
-- CTV1Ut-� 

\ 

\ � 
" -- -. - -� - - .. - --

250 500 750 1000 1250 1500 20 40 GO GCI1CI·illiOI1 80 100 Generation 
Figure 2. Convergence curves of DE and CMDE-G algorithms for function/! Figure 3. Convergence curves of DE and CMDE-G algorithms for function./3 
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TABLE II COMPARISON RESULTS OF DE AND CMDE-O FOR DIMENSION 25 

Function 
DE CMDE-O 

Mean Std ONE Mean Std ONE 

fi 4.72 I 7e-6 7.7I52e-7 2143.6 3.1604e-6 7.7406e-7 1547 

h 3.309ge-6 6.2714e-7 397.4 3.0763e-6 1.1412e-6 278.4 

jj 3.6598e-6 6.7250e-7 604.2 3.040Ie-6 9.0940e-7 408.8 

f4 0 0 307.8 0 0 208.4 

Is 0.0026 0.0005 5001 0.0018 0.0003 5001 

16 -10474.6 5.035ge-7 774.4 -10474.6 9.3078e-7 545.2 

.h 1.0546e-5 1.541Oe-6 714.6 1.0516e-5 1.2826e-6 497.2 

is 4.8087e-6 6.8572e-7 486 3.l125e-6 6.l420e-7 326 

h 3.6033e-6 5.4496e-7 501.4 3.5533e-6 6.028ge-7 347.4 

fio 3.5686e-6 2.9750e-7 447 3.3257e-6 2.7893e-7 314.6 

Function 
DE CMDE-O 

NFE Time(sec) SR NFE Time(sec) SR 

fi 214460 13.2 100 156364 9.4 100 

h 39840 2.2 100 28234 1.6 100 

jj 60520 3.8 100 41409.6 2.4 100 

f4 30880 0.4 100 21153.8 0.2 100 

Is 500100 27.2 0 505104 26.4 0 

16 77540 0.8 100 55187.8 0.6 100 

.h 71560 4.4 100 50341 3.2 100 

is 48700 5.2 100 33038.4 3.4 100 

h 50240 6.0 100 35203 4.4 100 

fio 44800 2.6 100 31890.6 2 100 

TABLE III COMPARISON RESULTS OF DE AND CMDE-G FOR DIMENSION 50 

Function 
DE CMDE-O 

Mean Std ONE Mean Std ONE 

fi 102.747 6.3651 5000 74.0724 6.9485 5001 

h 8.24e-5 1.21e-5 675 7.4065e-6 1.724Ie-6 464.2 

jj 8.40e-5 1.56e-5 977 7.6044e-6 1.5238e-6 631.6 

f4 0.00000 0.00000 603 0 0 338.8 

Is 0.01273 0.00234 5000 0.0054 0.0007 5001 

16 -20669.3 171.058 3427 -20949.1 1.5313e-6 1116 

.h 0.00021 2.46e-5 1141 2.033e-5 1.2523e-6 791.2 

is 8.62e-5 1.41e-5 931 8.297ge-6 9.5470e-7 556.6 

h 8.lle-5 1.18e-5 951 7.8884e-6 1.3465e-6 605.4 

fio 8.lge-5 1.06e-5 810 7.6930e-6 1.2614e-6 545 

Function 
DE CMDE-O 

NFE Time (sec) SR NFE Time(sec) SR 

fi 500100 55.33 0 505127 60.2 0 

h 67696 7.1 100 47004.4 5.2 100 

jj 97823 12.3 100 63918.4 8.0 100 

f4 60406 1.4 100 34326.4 0.6 100 

Is 500100 52.03 0 505105 53 0 

16 171432 5.33 100 112842 2.4 100 

.h 114207 13.16 100 80043 9.8 100 

is 93206 20.67 100 56332.6 12.8 100 

h 95213 22.6 100 61265.6 15 100 

fio 81180 8.4 100 55169.6 6.4 100 
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TABLE IV REsULTS OF COMPOSITE FUNCTIONS FOR DIMENSIONS 25 AND 50 

Dimension 25 

DE CMDE-G 
Function Time Time 

NFE 
(sec) 

NFE 
(sec) 

CF1 185940 10.4 131622 7.6 

CF2 54160 0.4 38804.6 0.1 

CF3 59380 3.8 44041.8 2.8 

CF4 72140 4.2 51556.2 3.2 

Dimension 50 

DE CMDE-G 
Function Time Time 

NFE 
(sec) 

NFE 
(sec) 

CF1 500100 55.2 505128 57 

CF2 107360 1.0 64058 0.6 

CF3 108020 13.2 65753.2 8.0 

CF4 136880 16.6 81498 9.8 

0.95 -,--------,-----,---------,---,--------, 

"- .' 
X QJ 
� 0.85 +----+---+----+-----.-L-+------1 
QJ U .' 

� •• 0 • • • • • • •  DE 
E 0.8 +----+---+-...-'-'---+---+------1 

.2 .' ----CMDE-G 
W ••••• 

"- 0.75 +---..,-. .. 0+'-'----+---+----!--------1 

0.7 
o 0.2 0.4 0.6 0.8 1 

WeightW 
Figure 4. Performance Index when kl=W, k2 = k3 = ( l -W)/2 

0.95 

0.9 

�0.85 x " . ......... DE QJ " . -0 " . --- CMDE-G c 0.8 
QJ u c ' . § 0.75 ...... " . 
.2 0.7 Qj ..... "-

0.65 
" . 

0.6 
0 0.2 0.4 0.6 0.8 1 

WeightW 
Figure 5. Performance Index when k2=W, kl = k3 = ( l -W)/2 
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.............. . ........ . 
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WeightW 
Figure 6. Performance Index when k3=W, kl = k2 = ( l -W)/2 

B. Results of composite functions 
Composite Functions were specially designed to test the 

efficiency of a global optimization algorithm. The numerical 
results for these functions (CFj - CF4) are given in Table IV. 
Here From this table also, we can see that the proposed CMDE
G algorithm is superior with basic DE for all the dimensions. 
For dimension 25, the total number of function evaluations for 
solving the four problems comes out to be 266024 for CMDE
G in comparison to 371620 as obtained by DE, which implies 
that there is an improvement of 28%. Similarly, the total time 
taken by CMDE-G is 13.7 whereas the total time taken by DE 
is 18.8 (an improvement of 27%). Similarly for dimension 50, 
CMDE-G gave a noticeable percentage of improvement of 
about 15% in terms of NFE and an improvement of around 
41 % in terms of average CPU time in comparison to basic DE 
algorithm. 

VI. CONCLUSION 

In the present study we proposed a modified version of DE 
called CMDE-G where Cauchy mutation operator is applied. In 
most of evolutionary algorithms mutation operator is applied 
according to some fixed probabilistic rule. In CMDE-G We do 
not have to fix a mutation probability in the beginning of the 
algorithm and secondly we do not have to specify the number 
of times mutation is to be applied in a particular generation. It 
is a sort of intelligent DE which applies the mutation as per the 
requirement and not according to some probabilistic rule. If 
there is an improvement in the fitness function value than the 
mutation is repeated otherwise the algorithm enters the next 
generation. The proposed algorithm is validated on a set of ten 
standard benchmark problems and four composite functions 
taken from the test suite of CEC2008 benchmark problems. Its 
comparison with classical DE shows that the use of Cauchy 
mutation in the form of a local strategy may help in improving 
the performance of basic DE. In future we intend the compare 
the performance of CMDE-G with other sophisticated and 
recent versions of DE. Also we plan to test its efficiency on real 
life and constrained problems. 
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