
Differential Evolution using a Localized Cauchy
Mutation Operator

Radha Thangraj l, Millie Pantl, Ajith Abraham2, Kusum Deepl, Vaclav Snasee
1 Indian Institute of Technology Roorkee, India

2 Machine Intelligence Research Labs (MIR Labs),
Scientific Network for Innovation and Research Excellence, USA

3VSB Technical University of Ostrava, Czech Republic
t.radha@ieee.org, millifpt@iitr.emet.in, ajith.abraham@ieee.org, kusumfina@iitr.ernet.in, vaclav.snasel@vsb.cz

Abstract- In the present work, we propose a new variant of
basic DE algorithm called CMDE-G which uses Cauchy mutation
(CM) operator. In this algorithm, at the end of every generation,

CM is applied as a local search mechanism to explore the
neighborhood of the best individual in the population. The
performance of CMDE-G algorithm is analyzed on a set of 10
standard benchmark problems and four nontraditional

composite functions. Simulation results show that the proposed
algorithm helps in improving the solution quality besides
maintaining a good convergence rate.

Keywords-Differential Evolution, mutation, cauchy
distribution, local search.

I. INTRODUCTION

Differential Evolution (DE), an optimization technique, is
an exceptionally simple and easy to use evolutionary strategy.
It is significantly faster and robust at numerical optimization
and is more likely to fmd a function's true global optimum [1].
Despite having several attractive features, practical experiences
shows that DE sometimes does not perform up to the
expectations. Like most of the population based search
techniques the driving force behind the success of DE is the
balance between the exploration (diversification) and
exploitation (intensification) processes. If these two are not
well defmed than problems like premature convergence or
stagnation of population may take place.

Several modifications have been made in the structure of
basic DE to improve its performance. Some interesting
modifications include parameter adaption strategy for DE by
Zaharie [2], Abbas [3] proposed a self adaptive crossover rate
for multiobjective optimization problems, Omran et al. [4]
introduced a self adaptive scaling factor parameter F, Brest et
al. [5] proposed SADE, which encoded control parameters F
and Cr into the individuals and evolved their values by using
two new probabilities. Teo [6] proposed an attempt at self
adapting the population size parameter in addition to self
adapting crossover and mutation rates. Yang et al. [7] proposed
a self adaptive differential evolution algorithm with
neighborhood search (SaNSDE). SaNSDE proposes three self
adaptive strategies: self adaptive choice of the mutation
strategy between two alternatives, self-adaptation of the scale
factor F, and self-adaptation of the crossover rate Cr. Qin et al.
[8] proposed a Self-adaptive DE algorithm (SaDE), where the

978-1-4244-6588-0/10/$25.00 ©201 0 IEEE

choice of learning strategy and the two control parameters F
and CR are not required to be pre-defmed.

In [9] and [10], Pant et al. suggested new mutation
strategies based on Laplace probability distribution and
Quadratic Interpolation respectively. Several developments in
DE algorithm design and application can be found in [11]. In
continuation to the techniques of improving the performance of
DE, in the present study we propose a modified version of DE
called CMDE-G. In CMDE-G Cauchy mutation is not added
just to induce a small perturbation in the population but is
included to provide a local search effect.

The remaining of the paper is organized as follows:
Sections II and III explain the original DE and the proposed
CMDE-G algorithms respectively. In section IV, experimental
settings and benchmark problems are given; the numerical
results are analyzed in section V. Finally the paper concludes
with Section VI.

II. DIFFERENTIAL EVOLUTION

In DE, a population of potential solutions within an n
dimensional search space, a fixed number of vectors, are
randomly initialized and then evolved over time to explore the
search space and locate the minima of the objective function.
At each iteration, called generation, new vectors are generated
by the combination of vectors randomly chosen from the
current population (mutation). The out coming vectors are then
mixed with a predetermined target vector to produce a trial
vector. Finally, the trial vector is accepted for the next
generation if and only if it yields a reduction in the value of the
objective function. This last operator is referred to as a
selection.

DE shares a common terminology of selection, crossover
and mutation operators with GA however it is the application
of these operators that make DE different from GA; while, in
GA crossover plays a significant role, it is the mutation
operator which affects the working of DE [12].

The working of basic DE may be described as follows:

For a D-dimensional search space, each target vector X;,g , a
mutant vector is generated by

(1)

3710

where 'i,r2,r3 E {1,2, ,NP} are randomly chosen
integers, must be different from each other and also different
from the running index i. F (>0) is a scaling factor which
controls the amplification of the differential
evolution (xr g - xr g) . In order to increase the diversity of

2' 3'
the perturbed parameter vectors, crossover is introduced [13].
The parent vector is mixed with the mutated vector to produce
a trial vectoruji,g+! ,

{Vj,i,G+l if randj � Cr v j = k (2) U j,i,G+l = x . . otherwise j,I,G

where j = 1,2, , D; randj E [0,1]; CR is the crossover
constant takes values in the range [0, 1]
andjrand E (1,2, ,D) is the randomly chosen index.

Selection is the step to choose the vector between the target
vector and the trial vector with the aim of creating an individual
for the next generation.

III. CAUCHY MUTATED DIFFERENTIAL EVOLUTION

The use of mutation operation is not new to the field of
evolutionary algorithms. Its main aim is to introduce a small
perturbation in the population from time to time so as to
maintain its diversity. Most of the times the mutation operation
is applied according to some fixed probabilistic rule. Also the
number of times mutation will take place is also predefmed. In
the past few years mutation operations based on different
probability distributions (like Normal, Gaussian, and Cauchy
etc) have become quite popular. The present study attempts to
use the Cauchy Mutation operator as a local search strategy.

Cauchy Mutated Differential Evolution (CMDE-G) starts
like the basic DE algorithm using the same mutation equation
as given in the previous section to generate the perturbed
mutant vector. The process of generating the trial vector and
selecting the fitter candidate for the next generation are also
same as that of basic DE algorithm. Once the selection process
is complete i.e. at the end of every iteration we search the
neighborhood of the best (or global best) particle say Xbesl with
the CM operator. If after mutation the solution quality is
improved, then it is applied again to see if the solution can be
improved any further. This process continues till we keep
getting better solution. In case there is no improvement in the
solution, then the algorithm moves to the next iteration.

At the end of every iteration, mutation is defmed as:

(3)

Where Xbesl is the global best particle, C is the Cauchy
distributed random number and rl, r2 E {1,2, , NP} are
randomly chosen integers, different from each other and also
different from the global best particle. The flowchart of
CMDE-G algorithm is given in Fig. 1.

IV. EXPERIMENTAL SETTINGS AND BENCHMARK PROBLEMS

In order to make a fair comparison of DE and CMDE-G
algorithms, we fixed the same seed for random number
generation so that the initial population is same for both the
algorithms. The population size is taken as 100 for all the test
problems. The crossover rate and scaling factor F are fixed at
0.2 and 0.5 respectively. For each algorithm, the maximum
number of iterations allowed was set to 5000 and the error goal
was set as 1 *e-04. A total of 30 runs for each experimental
setting were conducted and the average fitness along with the
average number of function evaluations (NFE), time taken and
number of generations (GNE) of the best solutions throughout
the run were recorded. The algorithms were programmed using
Developer C++ and were executed on a Pentium IV PC.

)[0

Initialize population size, crossover
rate aud scaling factor

Apply mutation, crossover and selection

Select the global best particle, x...=

Apply Cauchy Mutation to Xb"" and
evaluate its fitness

Figure l. Flowchart of CMDE-G algorithm

Yes

In order to check the compatibility of the proposed CMDE
G algorithm we have tested it on a suite of 10 benchmark
problems (given in Table I) and 4 nontraditional composite
functions [14]. The test bed comprises of a variety of problems
ranging from a simple spherical function to highly multimodal
functions with several local and global optima. The four
composite functions F4, Fj, F5 and F6, taken from CEC 2008
benchmarking problems [14], are here marked as CFj, CF2,
CF3 and CF4 respectively. All these functions are scalable,
shifted and multi-modal functions containing a large number of
local optima except CF2• CF2 is a unimodal function. The

3711

global optimum of both CF] is ftx*) = -330, CF2 is ftx*) = -
450, CF3 is ftx*) = -180 and that for CF4 is ftx*) = -140. For
more details on composite functions and other benchmark
problems of similar type the interested reader may please refer
to [14]. All the test problems are tested for two different
dimensions 25 and 50.

V. NUMERICAL RESULTS AND DISCUSSION

A. Analysis of traditional benchmark problems
1) Performance Analysis 1: The proposed CMDE-G is

compared with basic DE on traditional benchmark problems
by using the standard performance metrics like average fitness
function value, standard deviation, average number of function
evaluations (NFE) and CPU time (in sec) etc. the
corresponding results for dimensions 25 and 50 are given in
Tables II and III respectively.

From Table II, we can see that CMDE-G is either superior
or at par with basic DE for all the test cases in comparison of
all the performance measures. If we compare the performance
measures one by one then from the comparison of average
fitness function value it can be seen that CMDE-G gave better
result than DE in 8 test cases out of 10 cases tried. For the
remaining two test cases,14 and 16, both algorithms gave same
results. The total NFE taken by basic DE for solving the 10
benchmark problems is 1138640 while with CMDE-G it is
957926.2 showing that there is an improvement is around 16%.
Likewise an improvement in average CPU time is around 19%.
However the success rate for both the algorithms is 90%.

From Table III, where the results are recorded for
dimension 50, once again we can see the better performance of
the proposed CMDE-G algorithms. Here we can see that
CMDE-G outperformed the basic DE in 9 out of 10 test
problems in terms of average fitness function value. The total
number of function evaluations comes out to be 1521134 for
CMDE-G in comparison to 1781363 as obtained by DE,
showing an improvement of around 15%. The total time taken
by CMDE-G is 173.4whereas the total time taken by DE is
198.32 (an improvement of 13%). Also, in terms of total
numbers of generations, the performance of CMDE-G is better
than basic DE for problems of dimension 25 and 50.
Convergence curves of selected benchmark problems are
illustrated in Figures 2 and 3.

2) Performance Analysis II: Performance Index: To
further compare the consolidated performance of CMDE-G
with original DE with respect to success rate and average
number of function evaluations of successful runs both, the
value of performance index (PI) [15] is computed. This index
gives a weighted importance to the success rate and the
average number of function evaluations of successful runs.

The value of this performance index for a computational
algorithm under comparison is given by

PI =.l 't (kl at + k2a� + k3a�)
N i=1

. Sri
where a: = - . ;

Tr'

. --. lifSr' > 0 {Miffi .
a� = Af"

o if Sri = 0

if Sri> 0

if Sri = 0

i = 1,2, ,Np

Sri
= Number of successful runs of lh problem

Tri = Total number of runs Oflh problem

Mfi = Minimum of average number of function evaluations
of successful runs used by all algorithms in obtaining the
solution of lh problem

Afi = Average number of function evaluations of successful
runs used by an algorithm in obtaining the solution of lh
problem

Mti
= Minimum of average time used by all algorithms in

obtaining the solution of lh problem

At i = Average computational time used by an algorithm in
obtaining the solution of lh problem

N = Total number of problems analyzed. p

kl ,k2and k3(k1 +k2 +k3 =1 andO�kl>k2,k3 �l) are the

weights assigned to success rate and average number of
function evaluations of successful runs, respectively. From
above defmition it is clear that PI is a function of kb k2 and k3•
Since, kJ + k2 + k3 = 1, one of ki' i = 1,2,3 could be eliminated
to reduce the number of dependent variables from the
expression of PI. But it is still difficult to analyze the behavior
of PI, because the surface plots of PI for DE and CMDE-G are
overlapping and it is difficult to visualize them. So, we adopt
the same methodology as given in [15] i.e., equal weights are
assigned to two terms at a time in the PI expression. This way
PI becomes a function of one variable. The resultant cases are
as follows

1-W
kl =W,k2 =k3 =-

2
-,0�W�1

1-W
k2 =W,kl =k3 =-

2
-,0�W�1

1-W
k3 =W,kl =k2 =-

2
-,0�W�1

The PI is obtained for DE and CMDE-G for all the
benchmark problems and is shown in Figure 4 -6. It is clear
that the proposed CMDE-G outperforms the DE.

3712

�
VI (I) -<>
c OJ (I)
£.

VI
VI (I)
E

140

120

100

80

60

40

20

0
o

Function
Rastringin
Function

Sphere Function

Griewank
Function

Step function

Noisy Function

Schwefel
Function

Ackley Function

Generalized
penalized
function 1

Generalized
penalized
function 2

Axis parallel
hyper ellipsoid

;l
I �

�
�

.. �:: """""-
� &. ...

TABLE I NUMERICAL BENCHMARK PROBLEMS
Function Definition

n 2 Ji(X) = L(xi - lOcos(21lXi)+IO)
i=1

n 2 h(X) = LXi
i=1

1 n-I 2 n-I x· h(x) = -- L xi + L COS(,J.l)+1
4000i=0 i=O 1 + 1

n-I 2 f4(X) = L LXi +1I2J
i=<J

n-i 4 Is (x) = (L (i + l)x i) + rand[O,I] i =O

f6(x) = - £ Xi sin(�)
i=1

hex) = 20 + e- 20 exp(-O.2 1 n 2 -LXi)
ni=1
1 n

- exp(-L COS(21lXi »
ni=1

1l n-l
f8(X)=-{lOsin2(�I)+ L(Yi _1)2[1+lOsin2(Yi+I1l)]

n i=l
2 n

+(Yn -I) }+ Lu(xi,10,100,4)
i=1

n-I
f9(x) = (O.l){ sin2(3JIX1)+ L « Xi -1)2(1 +sin2(31Ixi+l)))

i=1
n-I

+ (Xn _1)2 (l + sin 2 (21lXn») + L U(Xi ,10,100,4)

n . 2 Jio(x) = LlXi
i=1

_nF

- (IV DE-G

i=O

140

1ZO

·i:"100
g

\
, ,

't,--, � 80 CJ
E
';' 60 � �

-" "'-- - - , --
"' ..

'" CI
c
;140

20

o

,
"

� .

Range Min.Value

[-5.12,5.12] 0

[-5.12,5.12] 0

[-600,600] 0

[-100,100] 0

[-1.28,1.28] 0

[-500,500] -418.9829*n

[-32,32] 0

[-50,50] 0

[-50,50] 0

[-5.12,5.12] 0

-� DE
-- CTV1Ut-�

\

\ �
" -- -. - -� - - .. - --

250 500 750 1000 1250 1500 20 40 GO GCI1CI·illiOI1 80 100 Generation
Figure 2. Convergence curves of DE and CMDE-G algorithms for function/! Figure 3. Convergence curves of DE and CMDE-G algorithms for function./3

3713

TABLE II COMPARISON RESULTS OF DE AND CMDE-O FOR DIMENSION 25

Function
DE CMDE-O

Mean Std ONE Mean Std ONE

fi 4.72 I 7e-6 7.7I52e-7 2143.6 3.1604e-6 7.7406e-7 1547

h 3.309ge-6 6.2714e-7 397.4 3.0763e-6 1.1412e-6 278.4

jj 3.6598e-6 6.7250e-7 604.2 3.040Ie-6 9.0940e-7 408.8

f4 0 0 307.8 0 0 208.4

Is 0.0026 0.0005 5001 0.0018 0.0003 5001

16 -10474.6 5.035ge-7 774.4 -10474.6 9.3078e-7 545.2

.h 1.0546e-5 1.541Oe-6 714.6 1.0516e-5 1.2826e-6 497.2

is 4.8087e-6 6.8572e-7 486 3.l125e-6 6.l420e-7 326

h 3.6033e-6 5.4496e-7 501.4 3.5533e-6 6.028ge-7 347.4

fio 3.5686e-6 2.9750e-7 447 3.3257e-6 2.7893e-7 314.6

Function
DE CMDE-O

NFE Time(sec) SR NFE Time(sec) SR

fi 214460 13.2 100 156364 9.4 100

h 39840 2.2 100 28234 1.6 100

jj 60520 3.8 100 41409.6 2.4 100

f4 30880 0.4 100 21153.8 0.2 100

Is 500100 27.2 0 505104 26.4 0

16 77540 0.8 100 55187.8 0.6 100

.h 71560 4.4 100 50341 3.2 100

is 48700 5.2 100 33038.4 3.4 100

h 50240 6.0 100 35203 4.4 100

fio 44800 2.6 100 31890.6 2 100

TABLE III COMPARISON RESULTS OF DE AND CMDE-G FOR DIMENSION 50

Function
DE CMDE-O

Mean Std ONE Mean Std ONE

fi 102.747 6.3651 5000 74.0724 6.9485 5001

h 8.24e-5 1.21e-5 675 7.4065e-6 1.724Ie-6 464.2

jj 8.40e-5 1.56e-5 977 7.6044e-6 1.5238e-6 631.6

f4 0.00000 0.00000 603 0 0 338.8

Is 0.01273 0.00234 5000 0.0054 0.0007 5001

16 -20669.3 171.058 3427 -20949.1 1.5313e-6 1116

.h 0.00021 2.46e-5 1141 2.033e-5 1.2523e-6 791.2

is 8.62e-5 1.41e-5 931 8.297ge-6 9.5470e-7 556.6

h 8.lle-5 1.18e-5 951 7.8884e-6 1.3465e-6 605.4

fio 8.lge-5 1.06e-5 810 7.6930e-6 1.2614e-6 545

Function
DE CMDE-O

NFE Time (sec) SR NFE Time(sec) SR

fi 500100 55.33 0 505127 60.2 0

h 67696 7.1 100 47004.4 5.2 100

jj 97823 12.3 100 63918.4 8.0 100

f4 60406 1.4 100 34326.4 0.6 100

Is 500100 52.03 0 505105 53 0

16 171432 5.33 100 112842 2.4 100

.h 114207 13.16 100 80043 9.8 100

is 93206 20.67 100 56332.6 12.8 100

h 95213 22.6 100 61265.6 15 100

fio 81180 8.4 100 55169.6 6.4 100

3714

TABLE IV REsULTS OF COMPOSITE FUNCTIONS FOR DIMENSIONS 25 AND 50

Dimension 25

DE CMDE-G
Function Time Time

NFE
(sec)

NFE
(sec)

CF1 185940 10.4 131622 7.6

CF2 54160 0.4 38804.6 0.1

CF3 59380 3.8 44041.8 2.8

CF4 72140 4.2 51556.2 3.2

Dimension 50

DE CMDE-G
Function Time Time

NFE
(sec)

NFE
(sec)

CF1 500100 55.2 505128 57

CF2 107360 1.0 64058 0.6

CF3 108020 13.2 65753.2 8.0

CF4 136880 16.6 81498 9.8

0.95 -,--------,-----,---------,---,--------,

"- .'
X QJ
� 0.85 +----+---+----+-----.-L-+------1
QJ U .'

� •• 0 • • • • • • • DE
E 0.8 +----+---+-...-'-'---+---+------1

.2 .' ----CMDE-G
W •••••

"- 0.75 +---..,-. .. 0+'-'----+---+----!--------1

0.7
o 0.2 0.4 0.6 0.8 1

WeightW
Figure 4. Performance Index when kl=W, k2 = k3 = (l -W)/2

0.95

0.9

�0.85 x " DE QJ " . -0 " . --- CMDE-G c 0.8
QJ u c ' . § 0.75 " .
.2 0.7 Qj "-

0.65
" .

0.6
0 0.2 0.4 0.6 0.8 1

WeightW
Figure 5. Performance Index when k2=W, kl = k3 = (l -W)/2

DE
CMDE-G

_0.95 +-----+----1---+----+------1
"
x w

_____ _ __ _ _ _ � 0.9 1--------�-��"/""_'''-'''-''"-='"_f_==__=___=ii-=--_____1
QJ u c
§0.85 +----!-----I---+----+------1
.2
Qj
"- 0.8 +----!-----I---+----+.-.. -.. -:-: .. '"" .. ;-o,.n-I

..............
....

0.75 +----!-----I---+----+------1
o 0.2 0.4 0.6 0.8

WeightW
Figure 6. Performance Index when k3=W, kl = k2 = (l -W)/2

B. Results of composite functions
Composite Functions were specially designed to test the

efficiency of a global optimization algorithm. The numerical
results for these functions (CFj - CF4) are given in Table IV.
Here From this table also, we can see that the proposed CMDE
G algorithm is superior with basic DE for all the dimensions.
For dimension 25, the total number of function evaluations for
solving the four problems comes out to be 266024 for CMDE
G in comparison to 371620 as obtained by DE, which implies
that there is an improvement of 28%. Similarly, the total time
taken by CMDE-G is 13.7 whereas the total time taken by DE
is 18.8 (an improvement of 27%). Similarly for dimension 50,
CMDE-G gave a noticeable percentage of improvement of
about 15% in terms of NFE and an improvement of around
41 % in terms of average CPU time in comparison to basic DE
algorithm.

VI. CONCLUSION

In the present study we proposed a modified version of DE
called CMDE-G where Cauchy mutation operator is applied. In
most of evolutionary algorithms mutation operator is applied
according to some fixed probabilistic rule. In CMDE-G We do
not have to fix a mutation probability in the beginning of the
algorithm and secondly we do not have to specify the number
of times mutation is to be applied in a particular generation. It
is a sort of intelligent DE which applies the mutation as per the
requirement and not according to some probabilistic rule. If
there is an improvement in the fitness function value than the
mutation is repeated otherwise the algorithm enters the next
generation. The proposed algorithm is validated on a set of ten
standard benchmark problems and four composite functions
taken from the test suite of CEC2008 benchmark problems. Its
comparison with classical DE shows that the use of Cauchy
mutation in the form of a local strategy may help in improving
the performance of basic DE. In future we intend the compare
the performance of CMDE-G with other sophisticated and
recent versions of DE. Also we plan to test its efficiency on real
life and constrained problems.

3715

REFERENCES

[I] G Price, K., and Storn, R. "Differential evolution-A simple evolution
strategy for fast optimization", Dr. Dobb's Journal, Vol. 22, pp. 18-24,
1997.

[2] D. Zaharie, "Control of population diversity and adaptation in
differential evolution algorithms," In D.Matousek, P. Osmera (eds.),
Proc. of MENDEL 2003, 9th International Conference on Soft
Computing, Brno, Czech Republic, pp. 41-46, June 2003.

[3] �. Abbass, "The self-adaptive pareto differential evolution algorithm,"
m Proc. of the 2002 Congress onEvolutionary Computation, pp. 831-
836,2002.

[4] M. Omran, A. Salman, and A. P. Engelbrecht, "Self-adaptive differential
evolution, computational intelligence and security," PT 1, Proceedings
Lecture Notes In Artificial Intelligence 3801, pp. 192-199,2005.

[5] J. Brest, S. Greiner, B. Bo§kovic, M. Mernik, and V. Zumer, "Self
adapting Control parameters in differential evolution: a comparative
study on numerical benchmark problems," IEEE Transactions on
Evolutionary Computation, Vol. 10 (6), pp. 646 - 657,2006.

[6] J. Teo, " Exploring Dynamic Self-adaptive Populations in Differential
Evolution", Soft Computing - A Fusion of Foundations Methodologies
and Applications, Vol. 10 (8), pp. 673 - 686,2006.

'

[7] Yang, Z., Tang, K. and Yao, X. , "Self-adaptive Differential Evolution
with Neighborhood Search", In Proc. IEEE Congress on Evolutionary
Computation, Hong Kong, pp. 1110-1116, 2008.

[8] Qin, A. K., Huang, V. 1. and Suganthan, P. N., "Differential Evolution
Algorithm with Strategy Adaptation for Global Numerical

Optimization", IEEE Transactions on Evolutionary Computations, Vol.
13 (2), pp. 398 - 417,2009.

[9] Pant, M., Thangaraj, R., Abraham, A. and Grosan, C., "Differential
Evolut!on with Laplace Mutation Operator, IEEE Congress on
EvolutIOnary Computation, Norway, pp. 2841-2849,2009.

[10] M. Pant, R. Thangaraj and V. P. Singh, "A New Differential Evolution
Algorithm for Solving Global Optimization Problems", lot. Conf. on
Advanced Computer Control, Singapore, IEEE Computer Society Press,
pp. 388 - 392, 2009.

[II] U. K. Chakraborty (Ed.) Advances in Differential Evolution Springer-
Verlag, Heidelberg, 2008.

'

[12] D. Karaboga and S. Okdem, "A simple and Global Optimization
Algorithm for Engineering Problems: Differential Evolution Algorithm"
Turk J. Elec. Engin., Vol. 12(1), pp. 53 - 60,2004.

'

[13] R. Storn and K. Price, "Differential Evolution - a simple and efficient
Heuristic for global optimization over continuous spaces" Journal
Global Optimization. II, pp. 341 - 359, 1997.

'

[14] Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C.
M., Yang, Z., "Benchmark Functions for the CEC'2008 Special Session
and Competition on Large Scale Global Optimization", IEEE Congress
on Evolutionary Computation, 2008.

[15] Deep, K. and Thakur, M , "A new crossover operator for real coded
genetic algorithms", Applied Mathematics and Computation, Vol. 188,
No. I, pp.895-911, 2007.

3716

